Amin N, Schwarzkopf S, Kinoshita A, Tröscher-Mußotter J, Dänicke S, Camarinha-Silva A, Huber K, Frahm J, Seifert J (2021) Evolution of rumen and oral microbiota in calves is influenced by age and time of weaning. Anim Microbiome 3(1):1–15. https://doi.org/10.1186/s42523-021-00095-3
Article
CAS
Google Scholar
AOAC (1995) Official method of analysis, 16th edn. AOAC International, Washington DC
Google Scholar
Arshad MA, Hassan FU, Rehman MS, Huws SA, Cheng Y, Din AU (2021) Gut microbiome colonization and development in neonatal ruminants: strategies, prospects, and opportunities. Anim Nutri 7:883–895. https://doi.org/10.1016/j.aninu.2021.03.004
Article
CAS
Google Scholar
Bayatkouhsar J, Tahmasebi AM, Naserian AA, Mokarram RR, Valizadeh R (2013) Effects of supplementation of lactic acid bacteria on growth performance, blood metabolites and fecal coliform and lactobacilli of young dairy calves. Anim Feed Sci Technol 186:1–11. https://doi.org/10.1016/j.anifeedsci.2013.04.015
Article
CAS
Google Scholar
Binder HJ (2010) Role of colonic short-chain fatty acid transport in diarrhea. Annu Rev Physiol 72:297–313. https://doi.org/10.1146/annurev-physiol-021909-135817
Article
CAS
PubMed
Google Scholar
Cangiano LR, Yohe TT, Steele MA, Renaud DL (2020) Invited Review: Strategic use of microbial-based probiotics and prebiotics in dairy calf rearing. Appl Anim Sci. 36(5):630–651. https://doi.org/10.15232/aas.2020-02049
Article
Google Scholar
Castro JJ, Gomez A, White B, Loften JR, Drackley JK (2016) Changes in the intestinal bacterial community, short-chain fatty acid profile, and intestinal development of preweaned Holstein calves. 2. Effects of gastrointestinal site and age. J Dairy Sci. 99(12):9703–9715. https://doi.org/10.3168/jds.2016-11007
Article
CAS
PubMed
Google Scholar
Celi P, Cowieson AJ, Fru-Nji F, Steinert RE, Kluenter AM, Verlhac V (2017) Gastrointestinal functionality in animal nutrition and health: new opportunities for sustainable animal production. Anim Feed Sci Technol 234:88–100. https://doi.org/10.1016/j.anifeedsci.2017.09.012
Article
Google Scholar
Choudhury R, Middelkoop A, Boekhorst J, Gerrits WJJ, Kemp B, Bolhuis JE, Kleerebezem M (2021) Early life feeding accelerates gut microbiome maturation and suppresses acute post-weaning stress in piglets. Environ Microbiol 23(11):7201–7213. https://doi.org/10.1111/1462-2920.15791
Article
CAS
PubMed
PubMed Central
Google Scholar
Dixit S, Kumar S, Sharma R, Banakar PS, Deb R, Tyagi AK (2022) Rumen microbial diversity, enteric methane emission and nutrient utilization of crossbred Karan-Fries cattle (Bos taurus) and Murrah buffalo (Bubalus bubalis) consuming varied roughage concentrate ratio. Anim Biotechnol. https://doi.org/10.1080/10495398.2022.2053696
Article
PubMed
Google Scholar
Fan P, Kim M, Liu G, Zhai Y, Liu T, Driver JD, Jeong KC (2021) The gut microbiota of newborn calves and influence of potential probiotics on reducing diarrheic disease by inhibition of pathogen colonization. Front Microbiol 12:772863. https://doi.org/10.3389/fmicb.2021.772863
Article
PubMed
PubMed Central
Google Scholar
Fernández S, Fraga M, Silveyra E, Trombert AN, Rabaza A, Pla M, Zunino P (2018) Probiotic properties of native Lactobacillus spp. strains for dairy calves. Benef Microbes 9:613–624. https://doi.org/10.3920/BM2017.0131
Article
PubMed
Google Scholar
Fernández S, Fraga M, Castells M, Colina R, Zunino P (2020) Effect of the administration of Lactobacillus spp. strains on neonatal diarrhoea, immune parameters and pathogen abundance in pre-weaned calves. Benef Microbes. 11(5):477–488. https://doi.org/10.3920/BM2019.0167
Article
PubMed
Google Scholar
Fomenky BE, Do DN, Talbot G, Chiquette J, Bissonnette N, Chouinard YP, Ibeagha-Awemu EM (2018) Direct-fed microbial supplementation influences the bacteria community composition of the gastrointestinal tract of pre-and post-weaned calves. Sci Rep 8(1):1–21. https://doi.org/10.1038/s41598-018-32375-5
Article
CAS
Google Scholar
Guo Y, Li Z, Deng M, Li Y, Liu G, Liu D, Liu Q, Liu Q, Sun B (2022) Effects of a multi-strain probiotic on growth, health, and fecal bacterial flora of neonatal dairy calves. Anim Biosci 35(2):204–216. https://doi.org/10.5713/ab.21.0084
Article
CAS
PubMed
Google Scholar
Jiang X, Xu HJ, Cui ZQ, Zhang YG (2020) Effects of supplementation with Lactobacillus plantarum 299v on the performance, blood metabolites, rumen fermentation and bacterial communities of preweaning calves. Livest Sci 239:104–120. https://doi.org/10.1016/j.livsci.2020.104120
Article
Google Scholar
Kore KB, Pattanaik AK, Das A, Sharma K (2009) Evaluation of alternative cereal sources in dog diets: effect on nutrient utilisation and hindgut fermentation characteristics. J Sci Food Agric 89:2174–2180. https://doi.org/10.1002/jsfa.3698
Article
CAS
Google Scholar
Koringa PG, Thakkar JR, Pandit RJ, Hinsu AT, Parekh MJ, Shah RK, Joshi CG (2019) Metagenomic characterisation of ruminal bacterial diversity in buffaloes from birth to adulthood using 16S rRNA gene amplicon sequencing. Funct Integr Genomics 19(2):237–247. https://doi.org/10.1007/s10142-018-0640-x
Article
CAS
PubMed
Google Scholar
Kumar S, Pattanaik AK, Sharma S, Jadhav SE, Dutta N, Kumar A (2017) Probiotic potential of a Lactobacillus bacterium of canine faecal-origin and its impact on select gut health indices and immune response of dogs. Probiotics Antimicrob Proteins 9:262–277. https://doi.org/10.1007/s12602-017-9256-z
Article
CAS
PubMed
Google Scholar
Kumar M, Kala A, Chaudhary LC, Agarwal N, Kochewad SA (2021a) Microencapsulated and lyophilized Lactobacillus acidophilus improved gut health and immune status of preruminant calves. Probiotics Antimicrob Proteins. https://doi.org/10.1007/s12602-021-09821-4
Article
PubMed
Google Scholar
Kumar S, Pattanaik AK, Jadhav SE (2021) Potent health-promoting effects of a synbiotic formulation prepared from Lactobacillus acidophilus NCDC15 fermented milk and Cichorium intybus root powder in Labrador dogs. Curr Res Biotechnol. 3:109–119. https://doi.org/10.1016/j.crbiot.2021b.06.001
Article
Google Scholar
Kumar S, Varada VV, Banakar PS, Tyagi N, Chouraddi R, Hogarehalli Mallapa R, Tyagi AK (2022) Screening and characterization of Sahiwal cattle calves-origin lactic acid bacteria based on desired probiotic attributes for potential application. Anim Biotechnol. https://doi.org/10.1080/10495398.2022.2043885
Article
PubMed
Google Scholar
Lesmeister KE, Heinrichs AJ, Gabler MT (2004) Effects of supplemental yeast (Saccharomyces cerevisiae) culture on rumen development, growth characteristics, and blood parameters in neonatal dairy calves. J Dairy Sci 87:1832–1839. https://doi.org/10.3168/jds.S0022-0302(04)73340-8
Article
CAS
PubMed
Google Scholar
Liu X, Zhao W, Yu D, Cheng JG, Luo Y, Wang Y, Wu YM (2019) Effects of compound probiotics on the weight, immunity performance and fecal microbiota of forest musk deer. Sci Rep 9(1):1–12. https://doi.org/10.1038/s41598-019-55731-5
Article
CAS
Google Scholar
Lu Q, Niu J, Wu Y, Zhang W (2022) Effects of Saccharomyces cerevisiae var. boulardii on growth, incidence of diarrhea, serum immunoglobulins, and rectal microbiota of suckling dairy calves. Livest Sci. https://doi.org/10.1016/j.livsci.2022.104875
Article
Google Scholar
Lucey PM, Lean IJ, Aly SS, Golder HM, Block E, Thompson JS, Rossow HA (2021) Effects of mannan-oligosaccharide and Bacillus subtilis supplementation to preweaning Holstein dairy heifers on body weight gain, diarrhea, and shedding of fecal pathogens. J Dairy Sci 104(4):4290–4302. https://doi.org/10.3168/jds.2020-19425
Article
CAS
PubMed
Google Scholar
Magalhães VJA, Susca F, Lima FS, Branco AF, Yoon I, Santos JEP (2008) Effect of feeding yeast culture on performance, health, and immunocompetence of dairy calves. J Dairy Sci 91(4):1497–1509. https://doi.org/10.3168/jds.2007-0582
Article
CAS
PubMed
Google Scholar
Magne F, Gotteland M, Gauthier L, Zazueta A, Pesoa S, Navarrete P, Balamurugan R (2020) The Firmicutes/Bacteroidetes ratio: a relevant marker of gut dysbiosis in obese patients? Nutrients 12(5):1474. https://doi.org/10.3390/nu12051474
Article
CAS
PubMed Central
Google Scholar
Malmuthuge N, Griebel PJ, Guan LL (2014) Taxonomic identification of commensal bacteria associated with the mucosa and digesta throughout the gastrointestinal tracts of preweaned calves. Appl Environ Microbiol 80(6):2021–2028. https://doi.org/10.1128/AEM.03864-13
Article
CAS
PubMed
PubMed Central
Google Scholar
Malmuthuge N, Griebel PJ, Guan LL (2015) The gut microbiome and its potential role in the development and function of new-born calf gastrointestinal tract. Front Vet Sci 2:36. https://doi.org/10.3389/fvets.2015.00036
Article
PubMed
PubMed Central
Google Scholar
Masucci F, De Rosa G, Grasso F, Napolitano F, Esposito G, Di Francia A (2011) Performance and immune response of buffalo calves supplemented with probiotic. Livest Sci 137:24–30. https://doi.org/10.1016/j.livsci.2010.09.019
Article
Google Scholar
Nagpal R, Wang S, Ahmadi S, Hayes J, Gagliano J, Subashchandrabose S, Yadav H (2018) Human-origin probiotic cocktail increases short-chain fatty acid production via modulation of mice and human gut microbiome. Sci Rep 8(1):1-15. https://doi.org/10.1038/s41598-018-30114-4
Article
CAS
Google Scholar
Oh JK, Vasquez R, Kim SH, Hwang IC, Song JH, Park JH, Kang DK (2021) Multispecies probiotics alter fecal short-chain fatty acids and lactate levels in weaned pigs by modulating gut microbiota. J Anim Sci Technol 63(5):1142. https://doi.org/10.5187/jast.2021.e94
Article
CAS
PubMed
PubMed Central
Google Scholar
Renaud DL, Kelton DF, Weese JS, Noble C, Duffield TF (2019) Evaluation of a multispecies probiotic as a supportive treatment for diarrhea in dairy calves: a randomized clinical trial. J Dairy Sci 102:4498–4505. https://doi.org/10.3168/jds.2018-15793
Article
CAS
PubMed
Google Scholar
Reuben RC, Sarkar SL, Ibnat H, Roy PC, Jahid IK (2022) Novel mono‐and multi‐strain probiotics supplementation modulates growth, intestinal microflora composition and haemato‐biochemical parameters in broiler chickens. Vet Med Sci 8(2):668–680. https://doi.org/10.1002/vms3.709
Article
CAS
PubMed
PubMed Central
Google Scholar
Rosa F, Michelotti TC, St-Pierre B, Trevisi E, Osorio JS (2021) Early life fecal microbiota transplantation in neonatal dairy calves promotes growth performance and alleviates inflammation and oxidative stress during weaning. Animals 11(9):2704. https://doi.org/10.3390/ani11092704
Article
PubMed
PubMed Central
Google Scholar
Sakata T, Kojima T, Fujieda M, Takahashi M, Michibata T (2003) Influences of probiotic bacteria on organic acid production by pig caecal bacteria in vitro. Proc Nutr Soc 62:73–80. https://doi.org/10.1079/PNS2002211
Article
CAS
PubMed
Google Scholar
Salim HM, Kang HK, Akter N, Kim DW, Kim WK (2013) Supplementation of direct-fed microbials as an alternative to antibiotic on growth performance, immune response, cecal microbial population, and ileal morphology of broiler chickens. Poult Sci 92:2084–2090. https://doi.org/10.3382/ps.2012-02947
Article
CAS
PubMed
Google Scholar
Sanders ME, Benson A, Lebeer S, Merenstein DJ, Klaenhammer TR (2018) Shared mechanisms among probiotic taxa: implications for general probiotic claims. Curr Opin Biotech. 49:207–216. https://doi.org/10.1016/j.copbio.2017.09.007
Article
CAS
PubMed
Google Scholar
Schmidt TSB, Raes J, Bork P (2018) The human gut microbiome: from association to modulation. Cell 172:1198–1215. https://doi.org/10.1016/j.cell.2018.02.044
Article
CAS
PubMed
Google Scholar
Sharma AN, Kumar S, Tyagi AK (2018) Effects of mannan-oligosaccharides and Lactobacillus acidophilus supplementation on growth performance, nutrient utilization and faecal characteristics in Murrah buffalo calves. J Anim Physiol Anim Nutr 102:679–689. https://doi.org/10.1111/jpn.12878
Article
CAS
Google Scholar
Singh M, Kumar S, Banakar PS, Vinay VV, Das A, Tyagi N, Tyagi AK (2021a) Synbiotic formulation of Cichorium intybus root powder with Lactobacillus acidophilus NCDC15 and Lactobacillus reuteri BFE7 improves growth performance in Murrah buffalo calves via altering selective gut health indices. Trop Anim Health Prod 53(2):1–9. https://doi.org/10.1007/s11250-021-02733-z
Article
Google Scholar
Singh A, Kumar S, Vinay VV, Tyagi B, Choudhury PK, Rashmi HM, Banakar PS, Tyagi N, Tyagi AK (2021b) Autochthonous Lactobacillus spp. isolated from Murrah buffalo calves show potential application as probiotic. Curr Res Biotechnol 3:109–119. https://doi.org/10.1016/j.crbiot.2021.04.002
Article
CAS
Google Scholar
Song Y, Malmuthuge N, Steele MA, Guan LL (2018) Shift of hindgut microbiota and microbial short chain fatty acids profiles in dairy calves from birth to pre-weaning. FEMS Microbiol Ecol 94(3):179. https://doi.org/10.1093/femsec/fix179
Article
CAS
Google Scholar
Sreedhar S, Ranganadham M, Mohan EM (2010) Calf mortality in indigenous buffaloes. Indian Vet J 87:197–198
Google Scholar
Stefańska B, Sroka J, Katzer F, Goliński P, Nowak W (2021) The effect of probiotics, phytobiotics and their combination as feed additives in the diet of dairy calves on performance, rumen fermentation and blood metabolites during the preweaning period. Anim Feed Sci Technol 272:114738. https://doi.org/10.1016/j.anifeedsci.2020.114738
Article
CAS
Google Scholar
Timmerman HM, Koning CJM, Mulder L, Rombouts FM, Beynen AC (2004) Monostrain, multistrain and multispecies probiotics—a comparison of functionality and efficacy. Int J Food Microbiol 96:219–233. https://doi.org/10.1016/j.ijfoodmicro.2004.05.012
Article
CAS
PubMed
Google Scholar
Varada VV, Tyagi AK, Banakar PS, Das A, Tyagi N, Mallapa RH, Kumar S (2022) Autochthonous Limosilactobacillus reuteri BFE7 and Ligilactobacillus salivarius BF17 probiotics consortium supplementation improves performance, immunity, and selected gut health indices in Murrah buffalo calves. Vet Res Commun. https://doi.org/10.1007/s11259-022-09896-6
Article
PubMed
Google Scholar
Villot C, Ma T, Renaud DL, Ghaffari MH, Gibson DJ, Skidmore A, Steele MA (2019) Saccharomyces cerevisiae boulardii CNCM I-1079 affects health, growth, and fecal microbiota in milk-fed veal calves. J Dairy Sci 102(8):7011–7025. https://doi.org/10.3168/jds.2018-16149
Article
CAS
PubMed
Google Scholar
Weiss S, Xu ZZ, Peddada S, Amir A, Bittinger K, Gonzalez A, Knight R (2017) Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 5(1):1–18. https://doi.org/10.1186/s40168-017-0237-y
Article
Google Scholar
Wu Y, Wang L, Luo R, Chen H, Nie C, Niu J, Zhang W (2021) Effect of a multispecies probiotic mixture on the growth and incidence of diarrhea, immune function, and fecal microbiota of pre-weaning dairy calves. Front Microbiol. https://doi.org/10.3389/fmicb.2021.681014
Article
PubMed
PubMed Central
Google Scholar
Yeoman CJ, White BA (2014) Gastrointestinal tract microbiota and probiotics in production animals. Annu Rev Anim Biosci. 2:469–86. https://doi.org/10.1146/annurev-animal-022513-114149
Article
PubMed
Google Scholar
Zaura E, Keijser BJ, Huse SM, Crielaard W (2009) Defining the healthy" core microbiome" of oral microbial communities. BMC Microbiol 9(1):1–12. https://doi.org/10.1186/1471-2180-9-259
Article
CAS
Google Scholar
Zhang Y, Choi SH, Nogoy KM, Liang S (2021) The development of the gastrointestinal tract microbiota and intervention in neonatal ruminants. Animal 15(8):100316. https://doi.org/10.1016/j.animal.2021.100316
Article
CAS
PubMed
Google Scholar