Andes D, Craig W, Nielsen LA, Kristensen HH (2009) In vivo pharmacodynamic characterization of a novel plectasin antibiotic, NZ2114, in a murine infection model. Antimicrob Agents Chemother 53(2009):3003–3009
Article
CAS
PubMed
PubMed Central
Google Scholar
Bai XJ, Teng D, Tian ZG, Zhu Y, Yang YL, Wang JH (2010) Contribution of bovine lactoferrin inter-lobe region to iron binding stability and antimicrobial activity against Staphylococcus aureus. Biometals 23(3):431–439
Article
CAS
PubMed
Google Scholar
Breidenstein EBM, Courvalin P, Meziane-Cherif D (2015) Antimicrobial activity of plectasin NZ2114 in combination with cell wall targeting antibiotics against vana-type Enterococcus faecalis. Microb Drug Resist 21(2015):373–379
Article
CAS
PubMed
Google Scholar
Brinch KS, Tulkens PM, Bambeke F, Frimodt-Moller N, Hoiby N, Kristensen HH (2010) Intracellular activity of the peptide antibiotic NZ2114: studies with Staphylococcus aureus and human THP-1 monocytes, and comparison with daptomycin and vancomycin. J Antimicrob Chemother 65(2010):1720–1724
Article
CAS
PubMed
Google Scholar
Brogden NK, Brogden KA (2011) Will new generations of modified antimicrobial peptides improve their potential as pharmaceuticals? Int J Antimicrob Agents 38(3):217–225
CAS
PubMed
PubMed Central
Google Scholar
Cao XT, Zhang Y, Mao RY, Teng D, Wang XM, Wang JH (2015) Design and recombination expression of a novel plectasin-derived peptide MP1106 and its properties against Staphylococcus aureus. Appl Microbiol Biotechnol 99(6):2649–2662
Article
CAS
PubMed
Google Scholar
Dantes R, Mu Y, Belflower R, Aragon D, Dumyati G, Harrison LH, Lessa FC, Lynfield R, Nadle J, Petit S, Ray SM, Schaffner W, Townes J, Fridkin S (2013) National burden of invasive methicillin-resistant Staphylococcus aureus infections, United States, 2011. JAMA Intern Med 173(21):1970–1978
PubMed
Google Scholar
Findlay B, Zhanel GG, Schweizer F (2010) Cationic amphiphiles, a new generation of antimicrobials inspired by the natural antimicrobial peptide scaffold. Antimicrob Agents Chemother 54(10):4049–4058
Article
CAS
PubMed
PubMed Central
Google Scholar
Giguère S, Lee EA, Guldbech KM, Berghaus LJ (2012) In vitro synergy, pharmacodynamics, and postantibiotic effect of 11 antimicrobial agents against Rhodococcus equi. Vet Microbiol 160(1):207–213
Article
PubMed
Google Scholar
Gopal R, Park S, Ha K, Cho SJ, Kim SW, Song PI, Nah J, Park Y, Hahm K (2009) Effect of leucine and lysine substitution on the antimicrobial activity and evaluation of the mechanism of the HPA3NT3 analog peptide. J Pept Sci 15(9):589–594
Article
CAS
PubMed
Google Scholar
Gould IM, David MZ, Esposito S, Garau J, Lina G, Mazzei T, Peters G (2012) New insights into meticillin-resistant Staphylococcus aureus (MRSA) pathogenesis, treatment and resistance. Int J Antimicrob Agents 39(2):96–104
Article
CAS
PubMed
Google Scholar
Grundmann H, Aanensen DM, Wijngaard CC, Spratt BG, Harmsen D, Friedrich AW, European Staphylococcal Reference Laboratory Working Group (2010) European staphylococcal reference laboratory working group, geographic distribution of Staphylococcus aureus causing invasive infections in Europe: a molecular-epidemiological analysis. PLoS Med 7(1):e1000215
Article
PubMed
PubMed Central
Google Scholar
Hansen M, Kilk K, Langel U (2008) Predicting cell-penetrating peptides. Adv Drug Deliv Rev 60:572–579
Article
CAS
PubMed
Google Scholar
Hara S, Mukae H, Sakamoto N, Ishimoto H, Amenomori M, Fujita H, Ishimatsu Y, Yanagihara K, Kohno S (2008) Plectasin has antibacterial activity and no affect on cell viability or IL-8 production. Biochem Biophys Res Commun 374(4):709–713
Article
CAS
PubMed
Google Scholar
Hawser SP, Bouchillon SK, Hoban DJ, Dowzicky M, Babinchak T (2011) Rising incidence of Staphylococcus aureus with reduced susceptibility to vancomycin and susceptibility to antibiotics: a global analysis 2004–2009. Int J Antimicrob Agents 37(3):219–224
Article
CAS
PubMed
Google Scholar
Hong IP, Lee SJ, Kim YS, Choi SG (2007) Recombinant expression of human cathelicidin (hCAP18/LL-37) in Pichia pastoris. Biotechnol Lett 29(1):73–78
Article
CAS
PubMed
Google Scholar
Jiao J, Mao RY, Wang X, Zhang Y, Teng D, Feng XJ, Wang JH (2015) GAP-initiated constitutive expression of a novel plectasin-derived peptide MP1106 by Pichia pastoris and its activity against Streptococcus suis. Process Biochem 50(2):253–261
Article
CAS
Google Scholar
Jin FL, Xu XX, Yu XQ, Ren SX (2009) Expression and characterization of antimicrobial peptide Cecropin AD in the methylotrophic yeast Pichia pastoris. Process Biochem 44(1):11–16
Article
CAS
Google Scholar
Kashiwada A, Mizuno M, Hashimoto J (2016) pH-Dependent membrane lysis by using melittin-inspired designed peptides. Org Biomol Chem 14(26):6281–62888
Article
CAS
PubMed
Google Scholar
Koba H, Okuda K, Watanabe H, Tagami J, Senpuku H (2009) Role of lysine in interaction between surface protein peptides of Streptococcus gordonii and agglutinin peptide. Oral Microbiol Immunol 24:162–169
Article
CAS
PubMed
Google Scholar
Köck R, Becker K, Cookson B, Gemert-Pijnen J, Harbarth S, Kluytmans J, Mielke M, Skov RL, Struelens MJ, Tacconelli E, Navarro Torné A, Witte W, Friedrich AW (2010) Methicillin-resistant Staphylococcus aureus (MRSA): burden of disease and control challenges in Europe. Euro Surveill 15:12–20
Google Scholar
Leibovici L, Paul M, Andreassen S (2010) Balancing the benefits and costs of antibiotic drugs: the TREAT model. Clin Microbiol Infec 16(12):1736–1739
Article
CAS
Google Scholar
Li Z, Xiong F, Lin Q, d’Anjou M, Daugulis AJ, Yang DS, Hew CL (2001) Hew low-temperature increases the yield of biologically active herring antifreeze protein in Pichia pastoris. Protein Expr Purif 21(3):438–445
Article
PubMed
Google Scholar
Li P, Anumanthan A, Gao XG, Ilangovan K, Suzara VV, Düzgüneş N, Renugopalakrishnan V (2007) Expression of recombinant proteins in Pichia pastoris. Appl Biochem Biotechnol 142(2):105–124
Article
CAS
PubMed
Google Scholar
Li RF, Lu YL, Lu YB, Zhang HR, Huang L, Yin YL, Zhang L, Liu S, Lu ZF, Sun YN (2015) Antiproliferative effect and characterization of a novel antifungal peptide derived from human Chromogranin A. Exp Ther Med 10(6):2289–2294
CAS
PubMed
PubMed Central
Google Scholar
Liu C, Bayer A, Cosgrove SE, Daum RS, Fridkin SK, Gorwitz RJ, Kaplan SL, Karchmer AW, Levine DP, Murray BE, Rybak MJ, Talan DA, Chambers HF (2011) Clinical practice guidelines by the infectious diseases society of america for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis 52(3):e18–e55
Article
PubMed
Google Scholar
Mao RY, Teng D, Wang XM, Xi D, Zhang Y, Hu XY, Yang YL, Wang JH (2013) Design, expression, and characterization of a novel targeted plectasin against methicillin-resistant Staphylococcus aureus. Appl Microbiol Biotechnol 97(9):3991–4002
Article
CAS
PubMed
Google Scholar
Mason AJ, Gasnier C, Kichler A, Prevost G, Aunis D, Metz-Boutigue M, Bechinger B (2006) Enhanced membrane disruption and antibiotic action against pathogenic bacteria by designed histidine-rich peptides at acidic pH. Antimicrob Agents Chemother 50(10):3305–3311
Article
CAS
PubMed
PubMed Central
Google Scholar
Mohammad H, Thangamani S, Seleem MN (2015) Antimicrobial peptides and peptidomimetics-potent therapeutic allies for staphylococcal infections. Curr Pharm Design 21(16):2073–2088
Article
CAS
Google Scholar
Müller P, Alber DG, Turnbull L, Schlothauer RC, Carter DA, Whitchurch CB, Harry EJ (2013) Synergism between medihoney and rifampicin against methicillin-resistant Staphylococcus aureus (MRSA). PLoS ONE 8(2):e57679
Article
PubMed
PubMed Central
Google Scholar
Mygind PH, Fischer RL, Schnorr KM, Hansen MT, Sönksen CP, Ludvigsen S, Raventós D, Buskov S, Christensen B, Maria L, Taboureau O, Yaver D, Elvig-Jørgensen SG, Sørensen MV, Christensen BJ, Kjærulff S, Frimodt-Moller N, Lehrer RI, Zasloff M, Kristensen H (2005) Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature 437(7061):975–980
Article
CAS
PubMed
Google Scholar
Ostergaard C, Sandvang D, Frimodt-Moller N, Kristensen HH (2009) High cerebrospinal fluid (CSF) penetration and potent bactericidal activity in CSF of NZ2114, a novel plectasin variant, during experimental pneumococcal meningitis. Antimicrob Agents Chemother 53(4):1581–1585
Article
PubMed
PubMed Central
Google Scholar
Pankuch GA, Appelbaum PC (2009a) Postantibiotic effect of ceftaroline against gram-positive organisms. Antimicrob Agents Chemother 53(10):4537–4539
CAS
PubMed
PubMed Central
Google Scholar
Pankuch GA, Appelbaum PC (2009b) Postantibiotic effect of tigecycline against 14 gram-positive organisms. Antimicrob Agents Chemother 53(2):782–784
Article
CAS
PubMed
Google Scholar
Pankuch GA, Jacobs MR, Appelbaum PC (2003) Postantibiotic effects of daptomycin against 14 staphylococcal and pneumococcal clinical isolates. Antimicrob Agents Chemother 47(9):3012–3014
Article
CAS
PubMed
PubMed Central
Google Scholar
Qu P, Gao W, Chen HX, Li D, Yang N, Zhu J, Feng XJ, Liu CL, Li ZQ (2016) The central hinge link truncation of the antimicrobial peptide fowlicidin-3 enhances its cell selectivity without antibacterial activity loss. Antimicrob Agents Chemother 60(5):2798–2806
Article
CAS
PubMed
PubMed Central
Google Scholar
Schägger H (2006) Tricine–SDS-PAGE. Nat Protoc 1:16–22
Article
PubMed
Google Scholar
Schneider T, Kruse T, Wimmer R, Wiedemann I, Sass V, Pag U, Jansen A, Nielsen AK, Mygind PH, Raventos DS, Neve S, Ravn B, Bonvin AMJJ, Maria L, Andersen AS, Gammelgaard LK, Sahl H, Kristensen H (2010) Plectasin, a fungal defensin, targets the bacterial cell wall precursor Lipid II. Science 328(5982):1168–1172
Article
CAS
PubMed
Google Scholar
Silva T, Magalhaes B, Maia S, Gomes P, Nazmi K, Bolscher JGM, Rodrigues PN, Bastos M, Gomes MS (2014) Killing of Mycobacterium avium by Lactoferricin peptides: improved activity of arginine- and d-amino-acid-containing molecules. Antimicrob Agents Chemother 58(6):3461–3467
Article
CAS
PubMed
PubMed Central
Google Scholar
Stefani S, Chung DR, Lindsay JA, Friedrich AW, Kearns AM, Westh H, MacKenzie FM (2012) Meticillin-resistant Staphylococcus aureus (MRSA): global epidemiology and harmonisation of typing methods. Int J Antimicrob Agents 39(4):273–282
Article
CAS
PubMed
Google Scholar
Strandberg E, Morein S, Rijkers DTS, Liskamp R, Wel P, Killian JA (2002) Lipid dependence of membrane anchoring properties and snorkeling behavior of aromatic and charged residues in transmembrane peptides. Biochemistry 41(23):7190–7198
Article
CAS
PubMed
Google Scholar
Taniguchi M, Takahashi N, Takayanagi T, Ikeda A, Ishiyama Y, Saitoh E, Kato T, Ochiai A, Tanaka T (2014) Effect of substituting arginine and lysine with alanine on antimicrobial activity and the mechanism of action of a cationic dodecapeptide (CL(14-25)), a partial sequence of cyanate lyase from rice. Biopolymers 102(1):58–68
Article
CAS
PubMed
Google Scholar
Tian ZG, Dong TT, Yang YL, Teng D, Wang JH (2009) Expression of antimicrobial peptide LH multimers in Escherichia coli C43 (DE3). Appl Microbiol Biotechnol 83(1):143–149
Article
CAS
PubMed
Google Scholar
Tsuji BT, Rybak MJ (2006) Etest synergy testing of clinical isolates of Staphylococcus aureus demonstrating heterogeneous resistance to vancomycin. Diagn Microbiol Infect Dis 54(1):73–77
Article
CAS
PubMed
Google Scholar
Tu Z, Young A, Murphy C, Liang JF (2009) The pH sensitivity of histidine-containing lytic peptides. J Pept Sci 15(11):790–795
Article
CAS
PubMed
PubMed Central
Google Scholar
Veiga AS, Sinthuvanich C, Gaspar D, Franquelim HG, Castanho M, Schneider JP (2012) Arginine-rich self-assembling peptides as potent antibacterial gels. Biomaterials 33(35):8907–8916
Article
CAS
PubMed
PubMed Central
Google Scholar
Watanabe T, Ohashi K, Matsui K, Kubota T (1997) Comparative studies of the bactericidal, morphological and post-antibiotic effects of arbekacin and vancomycin against methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother 39(4):471–476
Article
CAS
PubMed
Google Scholar
Weistroffer PL (2007) Cathelicidins: a history and current knowledge with experimental data on the antimicrobial and cytotoxic activities of SMAP29 and congeners. University of Iowa, Iowa. http://ir.uiowa.edu/etd/164
Wertheim HF, Melles DC, Vos MC, Leeuwen W, Belkum A, Verbrugh HA, Nouwen JL (2105) The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect Dis 5(12):751–762
Article
Google Scholar
White RL, Burgess DS, Manduru M, Bosso JA (1996) Comparison of three different in vitro methods of detecting synergy: time-kill, checkerboard, and E test. Antimicrob Agents Chemother 40(1):1914–1918
CAS
PubMed
PubMed Central
Google Scholar
Xiong YQ, Hady WA, Deslandes A, Rey A, Fraisse L, Kristensen HH, Yeaman MR, Bayer AS (2011) Efficacy of NZ2114, a novel plectasin-derived cationic antimicrobial peptide antibiotic, in experimental endocarditis due to methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 55(2011):5325–5330
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang YL, Teng D, Zhang J, Tian ZG, Wang SR, Wang JH (2011) Characterization of recombinant plectasin: solubility, antimicrobial activity and factors that affect its activity. Process Biochem 46(5):1050–1055
Article
CAS
Google Scholar
Yang N, Wang XM, Teng D, Mao RY, Hao Y, Zong LF, Feng XJ, Wang JH (2016) Modification and characterization of a new recombinant marine antimicrobial peptide N2. Process Biochem 51(6):734–739
Article
CAS
Google Scholar
Zasloff M (2016) Antimicrobial peptides: role in human health and disease in antimicrobial peptides: do they have a future as therapeutics?. Springer International Publishing, Berlin, pp 147–154
Google Scholar
Zhang Y, Teng D, Mao RY, Wang XM, Xi D, Hu XY, Wang JH (2014) High expression of a plectasin-derived peptide NZ2114 in Pichia pastoris and its pharmacodynamics, postantibiotic and synergy against Staphylococcus aureus. Appl Microbiol Biotechnol 98(2014):681–694
Article
CAS
PubMed
Google Scholar