Aleshin AE, Feng PH, Honzatko RB, Reilly PJ: Crystal structure and evolution of a prokaryotic glucoamylase. J Mol Biol 2003, 327: 61–73. doi:10.1016/S0022–2836(03)00084–6 10.1016/S0022-2836(03)00084-6
Article
CAS
PubMed
Google Scholar
Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72: 248–254. doi:10.1016/0003–2697(76)90527–3 10.1016/0003-2697(76)90527-3
Article
CAS
PubMed
Google Scholar
Corrêa JM, Graciano L, Abrahão J, Loth EA, Gandra RF, Kadowaki MK, Henn C, Simão Rde C: Expression and characterization of a GH39 β-xylosidase II from Caulobacter crescentus. Appl Biochem Biotechnol 2012, 168: 2218–2229. doi:10.1007/s12010–012–9931–1 10.1007/s12010-012-9931-1
Article
PubMed
Google Scholar
Coutinho PM, Reilly PJ: Glucoamylase structural, functional, and evolutionary relationships. Proteins 1997, 29: 334–347. doi:10.1002/(SICI)1097–0134(199711) 10.1002/(SICI)1097-0134(199711)29:3<334::AID-PROT7>3.0.CO;2-A
Article
CAS
PubMed
Google Scholar
Dock C, Hess M, Antranikian G: A thermoactive glucoamylase with biotechnological relevance from the thermoacidophilic Euryarchaeon Thermoplasma acidophilum . Appl Microbiol Biotechnol 2008, 78: 105–114. doi:10.1007/s00253–007–1293–1 10.1007/s00253-007-1293-1
Article
CAS
PubMed
Google Scholar
Ducki A, Grundmann O, Konermann L, Mayer F, Hoppert M: Glucoamylase from Thermoanaerobacterium thermosaccharolyticum : sequence studies and analysis of the macromolecular architecture of the enzyme. J Gen Appl Microbiol 1998, 44: 327–335. doi:10.2323/jgam.44.327 10.2323/jgam.44.327
Article
CAS
PubMed
Google Scholar
Frandsen TP, Dupont C, Lehmbeck J, Stoffer B, Sierks MR, Honzatko RB, Svensson B: Site-directed mutagenesis of the catalytic base glutamic acid 400 in glucoamylase from Aspergillus niger and of tyrosine 48 and glutamine 401, both hydrogen-bonded to the gamma-carboxylate group of glutamic acid 400. Biochemistry 1994, 33: 13808–13816. doi:10.1021/bi00250a035 10.1021/bi00250a035
Article
CAS
PubMed
Google Scholar
Ganghofner D, Kellermann J, Staudenbauer WL, Bronnenmeier K: Purification and properties of an amylopullulanase, a glucoamylase, and an alpha-glucosidase in the amylolytic enzyme system of Thermoanaerobacterium thermosaccharolyticum . Biosci Biotechnol Biochem 1998, 62: 302–308. doi:10.1271/bbb.62.302 10.1271/bbb.62.302
Article
CAS
PubMed
Google Scholar
Gloster TM, Turkenburg JP, Potts JR, Henrissat B, Davies GJ: Divergence of catalytic mechanism within a glycosidase family provides insight into evolution of carbohydrate metabolism by human gut flora. Chem Biol 2008, 15: 1058–1067. doi:10.1016/j.chembiol..09.005 10.1016/j.chembiol.2008.09.005
Article
PubMed Central
CAS
PubMed
Google Scholar
Graciano L, Corrêa JM, Gandra RF, Seixas FA, Kadowaki MK, Sampaio SC, Silva JL, Osaku CA, Simão Rde C: The cloning, expression, purification, characterization and modeled structure of Caulobacter crescentus β-Xylosidase I. World J Microbiol Biotechnol 2012, 28: 2879–2888. doi:10.1007/s11274–012–1099-x 10.1007/s11274-012-1099-x
Article
CAS
PubMed
Google Scholar
Harris EM, Aleshin AE, Firsov LM, Honzatko RB: Refined structure for the complex of 1-deoxynojirimycin with glucoamylase from Aspergillus awamori var. X100 to 2.4-Å resolution. Biochemistry 1993, 32: 1618–1626. doi:10.1021/bi00057a028 10.1021/bi00057a028
Article
CAS
PubMed
Google Scholar
Hiromi K, Nitta Y, Numata C, Ono S: Subsite affinities of glucoamylase: examination of the validity of the subsite theory. Biochim Biophys Acta 1973, 302: 362–375. 10.1016/0005-2744(73)90164-2
Article
CAS
PubMed
Google Scholar
Ichikawa K, Tonozuka T, Uotsu-Tomita R, Akeboshi H, Nishikawa A, Sakano Y: Purification, characterization, and subsite affinities of Thermoactinomyces vulgaris R-47 maltooligosaccharide-metabolizing enzyme homologous to glucoamylases. Biosci Biotechnol Biochem 2004, 68: 413–420. doi:10.1271/bbb.68.413 10.1271/bbb.68.413
Article
CAS
PubMed
Google Scholar
Kashimura A, Okawa K, Ishikawa K, Kida Y, Iwabuchi K, Matsushima Y, Sakaguchi M, Sugahara Y, Oyama F: Protein A-mouse acidic mammalian chitinase-V5-His expressed in periplasmic space of Escherichia coli possesses chitinase functions comparable to CHO-expressed protein. PLoS ONE 2013, 8: e78669. doi:10.1371/journal.pone.0078669 10.1371/journal.pone.0078669
Article
PubMed Central
CAS
PubMed
Google Scholar
Kim MS, Park JT, Kim YW, Lee HS, Nyawira R, Shin HS, Park CS, Yoo SH, Kim YR, Moon TW, Park KH: Properties of a novel thermostable glucoamylase from the hyperthermophilic archaeon Sulfolobus solfataricus in relation to starch processing. Appl Environ Microbiol 2004, 70: 3933–3940. doi:10.1128/AEM.70.7.3933–3940.2004 10.1128/AEM.70.7.3933-3940.2004
Article
PubMed Central
CAS
PubMed
Google Scholar
Kumar P, Satyanarayana T: Microbial glucoamylases: characteristics and applications. Crit Rev Biotechnol 2009, 29: 225–255. doi:10.1080/07388550903136076 10.1080/07388550903136076
Article
CAS
PubMed
Google Scholar
Kumari A, Gupta R: Extracellular expression and characterization of thermostable lipases, LIP8, LIP14 and LIP18, from Yarrowia lipolytica . Biotechnol Lett 2012, 34: 1733–1739. doi:10.1007/s10529–012–0958–8 10.1007/s10529-012-0958-8
Article
CAS
PubMed
Google Scholar
Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227: 680–685. doi:10.1038/227680a0 10.1038/227680a0
Article
CAS
PubMed
Google Scholar
Lohmiller S, Hantke K, Patzer SI, Braun V: TonB-dependent maltose transport by Caulobacte rcrescentus . Microbiology 2008, 154: 1748–1754. doi:10.1099/mic.0.2008/017350–0 10.1099/mic.0.2008/017350-0
Article
CAS
PubMed
Google Scholar
Mertens JA, Braker JD, Jordan DB: Catalytic properties of two Rhizopus oryzae 99–880 glucoamylase enzymes without starch binding domains expressed in Pichia pastoris . Appl Biochem Biotechnol 2010, 162: 2197–2213. doi:10.1007/s12010–010–8994–0 10.1007/s12010-010-8994-0
Article
CAS
PubMed
Google Scholar
Mizuno M, Tonozuka T, Suzuki S, Uotsu-Tomita R, Kamitori S, Nishikawa A, Sakano Y: Structural insights into substrate specificity and function of glucodextranase. J Biol Chem 2004, 279: 10575–10583. doi:10.1074/jbc.M310771200
Article
CAS
PubMed
Google Scholar
Moks T, Abrahmsén L, Holmgren E, Bilich M, Olsson A, Uhlén M, Pohl G, Sterky C, Hultberg H, Josephson S, Holmgren A, Jörnvall H, Nilsson B: Expression of human insulin-like growth factor I in bacteria: use of optimized gene fusion vectors to facilitate protein purification. Biochemistry 1987, 26: 5239–5244. doi:10.1021/bi00391a005 10.1021/bi00391a005
Article
CAS
PubMed
Google Scholar
Neugebauer H, Herrmann C, Kammer W, Schwarz G, Nordheim A, Braun V: ExbBD-dependent transport of maltodextrins through the novel MalA protein across the outer membrane of Caulobacter crescentus . J Bacteriol 2005, 187: 8300–8311. doi:10.1128/JB.187.24.8300–8311.2005 10.1128/JB.187.24.8300-8311.2005
Article
PubMed Central
CAS
PubMed
Google Scholar
Nierman WC, Feldblyum TV, Laub MT, Paulsen IT, Nelson KE, Eisen JA, Heidelberg JF, Alley MR, Ohta N, Maddock JR, Potocka I, Nelson WC, Newton A, Stephens C, Phadke ND, Ely B, DeBoy RT, Dodson RJ, Durkin AS, Gwinn ML, Haft DH, Kolonay JF, Smit J, Craven MB, Khouri H, Shetty J, Berry K, Utterback T, Tran K, Wolf A, Vamathevan J, Ermolaeva M, White O, Salzberg SL, Venter JC, Shapiro L, Fraser CM: Complete genome sequence of Caulobacter crescentus . Proc Natl Acad Sci USA 2001, 98: 4136–4141. doi:10.1073/pnas.061029298 10.1073/pnas.061029298
Article
PubMed Central
CAS
PubMed
Google Scholar
Niesen FH, Berglund H, Vedadi M: The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat Protoc 2007, 2: 2212–2221. doi:10.1038/nprot.2007.321 10.1038/nprot.2007.321
Article
CAS
PubMed
Google Scholar
Ohnishi H, Kitamura H, Minowa T, Sakai H, Ohta T: Molecular cloning of a glucoamylase gene from a thermophilic Clostridium and kinetics of the cloned enzyme. Eur J Biochem 1992, 207: 413–418. doi:10.1111/j.1432–1033.1992.tb17064.x 10.1111/j.1432-1033.1992.tb17064.x
Article
CAS
PubMed
Google Scholar
Ohnishi H, Matsumoto H, Sakai H, Ohta T: Functional roles of Trp337 and Glu632 in Clostridium glucoamylase, as determined by chemical modification, mutagenesis, and the stopped-flow method. J Biol Chem 1994, 269: 3503–3510.
CAS
PubMed
Google Scholar
Poindexter JS: Biological properties and classification of the Caulobacter group. Bacteriol Rev 1964, 28: 231–295.
PubMed Central
CAS
PubMed
Google Scholar
Rajput R, Tiwary E, Sharma R, Gupta R: Swapping of pro-sequences between keratinases of Bacillus licheniformis and Bacillus pumilus : altered substrate specificity and thermostability. Enzyme Microb Technol 2012, 51: 131–138. doi:10.1016/j.enzmictec.2012.04.010 10.1016/j.enzmictec.2012.04.010
Article
CAS
PubMed
Google Scholar
Sambrook J, Russell DW: Molecular cloning, a laboratory manual 3rd edition. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2001.
Google Scholar
Serour E, Antranikian G: Novel thermoactive glucoamylases from the thermoacidophilic archaea Thermoplasma acidophilum, Picrophilus torridus and Picrophilus oshimae . Antonie Van Leeuwenhoek 2002, 81: 73–83. doi:10.1023/A:1020525525490 10.1023/A:1020525525490
Article
CAS
PubMed
Google Scholar
Sierks MR, Ford C, Reilly PJ, Svensson B: Site-directed mutagenesis at the active site Trp120 of Aspergillus awamori glucoamylase. Protein Eng 1989, 2: 621–625. 10.1093/protein/2.8.621
Article
CAS
PubMed
Google Scholar
Sierks MR, Ford C, Reilly PJ, Svensson B: Catalytic mechanism of fungal glucoamylase as defined by mutagenesis of Asp176, Glu179 and Glu180 in the enzyme from Aspergillus awamori . Protein Eng 1990, 3: 193–198. doi:10.1093/protein/3.3.193 10.1093/protein/3.3.193
Article
CAS
PubMed
Google Scholar
Song N, Cai HY, Yan ZS, Jiang HL: Cellulose degradation by one mesophilic strain Caulobacter sp. FMC1 under both aerobic and anaerobic conditions. Bioresour Technol 2013, 131: 281–287. doi:10.1016/j.biortech.2013.01.003
Article
CAS
PubMed
Google Scholar
Takeshima-Futagami T, Sakaguchi M, Uehara E, Aoki K, Ishida N, Sanai Y, Sugahara Y, Kawakita M: Amino acid residues important for CMP-sialic acid recognition by the CMP-sialic acid transporter: analysis of the substrate specificity of UDP-galactose/CMP-sialic acid transporter chimeras. Glycobiology 2012, 22: 1731–1740. doi:10.1093/glycob/cws116 10.1093/glycob/cws116
Article
CAS
PubMed
Google Scholar
Tiwary E, Gupta R: Extracellular expression of keratinase from Bacillus licheniformis ER-15 in Escherichia coli . J Agric Food Chem 2010, 58: 8380–8385. doi:10.1021/jf100803g 10.1021/jf100803g
Article
CAS
PubMed
Google Scholar
Uotsu-Tomita R, Tonozuka T, Sakai H, Sakano Y: Novel glucoamylase-type enzymes from Thermoactinomyces vulgaris and Methanococcus jannaschii whose genes are found in the flanking region of the alpha-amylase genes. Appl Microbiol Biotechnol 2001, 56: 465–473. doi:10.1007/s002530100609 10.1007/s002530100609
Article
CAS
PubMed
Google Scholar
Zheng Y, Xue Y, Zhang Y, Zhou C, Schwaneberg U, Ma Y: Cloning, expression, and characterization of a thermostable glucoamylase from Thermoanaerobacter tengcongensis MB4. Appl Microbiol Biotechnol 2010, 87: 225–233. doi:10.1007/s00253–010–2439–0 10.1007/s00253-010-2439-0
Article
CAS
PubMed
Google Scholar