Ahlmann M, Hempel G (2016) The effect of cyclophosphamide on the immune system: implications for clinical cancer therapy. Cancer Chemother Pharmacol 78(4):661–671. https://doi.org/10.1007/s00280-016-3152-1
Article
CAS
PubMed
Google Scholar
Amadio J, Casey E, Murphy CD (2013) Filamentous fungal biofilm for production of human drug metabolites. Appl Microbiol Biotechnol 97(13):5955–5963. https://doi.org/10.1007/s00253-013-4833-x
Article
CAS
PubMed
Google Scholar
Anh DH, Ullrich R, Benndorf D, Svatos A, Muck A, Hofrichter M (2007) The coprophilous mushroom Coprinus radians secretes a haloperoxidase that catalyzes aromatic peroxygenation. Appl Environ Microbiol 73(17):5477–5485. https://doi.org/10.1128/AEM.00026-07
Article
CAS
PubMed
PubMed Central
Google Scholar
Atrakchi AH (2009) Interpretation and considerations on the safety evaluation of human drug metabolites. Chem Res Toxicol 22(7):1217–1220. https://doi.org/10.1021/tx900124j
Article
CAS
PubMed
Google Scholar
Atzrodt J, Derdau V, Holla W, Sandvoss M (2012) The synthesis of selected phase II metabolites—O-glucuronides and sulfates of drug development candidates. Arkivoc 3:257–278. https://doi.org/10.3998/ark.5550190.0013.319
Article
Google Scholar
Baillie TA, Cayen MN, Fouda H, Gerson RJ, Green JD, Grossman SJ, Klunk LJ, LeBlanc B, Perkins DG, Shipley LA (2002) Drug metabolites in safety testing. Toxicol Appl Pharmacol 182(3):188–196. https://doi.org/10.1006/taap.2002.9440
Article
CAS
PubMed
Google Scholar
Bernhardt R, Urlacher VB (2014) Cytochromes P450 as promising catalysts for biotechnological application: chances and limitations. Appl Microbiol Biotechnol 98(14):6185–6203. https://doi.org/10.1007/s00253-014-5767-7
Article
CAS
PubMed
Google Scholar
Brandon EF, Raap CD, Meijerman I, Beijnen JH, Schellens JH (2003) An update on in vitro test methods in human hepatic drug biotransformation research: pros and cons. Toxicol Appl Pharmacol 189(3):233–246. https://doi.org/10.1016/s0041-008x(03)00128-5
Article
CAS
PubMed
Google Scholar
Chang TK, Weber GF, Crespi CL, Waxman DJ (1993) Differential activation of cyclophosphamide and ifosphamide by cytochromes P-450 2B and 3A in human liver microsomes. Cancer Res 53(23):5629–5637
CAS
PubMed
Google Scholar
Chang TK, Yu L, Maurel P, Waxman DJ (1997a) Enhanced cyclophosphamide and ifosfamide activation in primary human hepatocyte cultures: response to cytochrome P-450 inducers and autoinduction by oxazaphosphorines. Cancer Res 57(10):1946–1954
CAS
PubMed
Google Scholar
Chang TK, Yu Li, Goldstein JA, Waxman DJ (1997b) Identification of the polymorphically expressed CYP2C19 and the wild-type CYP2C9-ILE359 allele as low-Km catalysts of cyclophosphamide and ifosfamide activation. Pharmacogenet Genom 7:211–221
Article
CAS
Google Scholar
Chen MS, White MC (2010) Combined effects on selectivity in Fe-catalyzed methylene oxidation. Science 327(5965):566–571. https://doi.org/10.1126/science.1183602
Article
CAS
PubMed
Google Scholar
Choi JM, Oh SJ, Lee JY, Jeon JS, Ryu CS, Kim YM, Lee K, Kim SK (2015) Prediction of drug-induced liver injury in HepG2 cells cultured with human liver microsomes. Chem Res Toxicol 28(5):872–885. https://doi.org/10.1021/tx500504n
Article
CAS
PubMed
Google Scholar
Ciccone V, Terzuoli E, Donnini S, Giachetti A, Morbidelli L, Ziche M (2018) Stemness marker ALDH1A1 promotes tumor angiogenesis via retinoic acid/HIF-1alpha/VEGF signalling in MCF-7 breast cancer cells. J Exp Clin Cancer Res 37(1):1–16. https://doi.org/10.1186/s13046-018-0975-0
Article
CAS
Google Scholar
Crabb DW, Matsumoto M, Chang D, You M (2004) Overview of the role of alcohol dehydrogenase and aldehyde dehydrogenase and their variants in the genesis of alcohol-related pathology. Proc Nutr Soc 63(1):49–63. https://doi.org/10.1079/pns2003327
Article
CAS
PubMed
Google Scholar
de Jonge ME, Huitema AD, Rodenhuis S, Beijnen JH (2005) Clinical pharmacokinetics of cyclophosphamide. Clin Pharmacokinet 44(11):1135–1164. https://doi.org/10.2165/00003088-200544110-00003
Article
PubMed
Google Scholar
Derdau V, Fey T, Atzrodt J (2010) Synthesis of isotopically labelled SGLT inhibitors and their metabolites. Tetrahedron 66(7):1472–1482. https://doi.org/10.1016/j.tet.2009.12.003
Article
CAS
Google Scholar
FDA (2016) Guidance for Industry: safety testing of drug metabolites. US Department of Health and Human Services FaDA, Center for Drug Evaluation and Research. Silver Spring, MD
Fleming RA (1997) An overview of cyclophosphamide and ifosfamide pharmacology. Pharmacotherapy 17(5 Pt 2):146S–154S
CAS
PubMed
Google Scholar
Ganesan S, Keating AF (2015) Phosphoramide mustard exposure induces DNA adduct formation and the DNA damage repair response in rat ovarian granulosa cells. Toxicol Appl Pharmacol 282(3):252–258. https://doi.org/10.1016/j.taap.2014.11.017
Article
CAS
PubMed
Google Scholar
Genovino J, Sames D, Hamann LG, Toure BB (2016) Accessing drug metabolites via transition-metal catalyzed C−H oxidation: the liver as synthetic inspiration. Angew Chem Int Ed 55(46):14218–14238. https://doi.org/10.1002/anie.201602644
Article
CAS
Google Scholar
Gomez de Santos P, Cañellas M, Tieves F, Younes SH, Molina-Espeja P, Hofrichter M, Hollmann F, Guallar V, Alcalde M (2018) Selective synthesis of the human drug metabolite 5′-hydroxypropranolol by an evolved self-sufficient peroxygenase. ACS Catalysis 8(6):4789–4799. https://doi.org/10.1021/acscatal.8b01004
Article
CAS
Google Scholar
Gomez de Santos P, Cervantes FV, Tieves F, Plou FJ, Hollmann F, Alcalde M (2019) Benchmarking of laboratory evolved unspecific peroxygenases for the synthesis of human drug metabolites. Tetrahedron 75(13):1827–1831. https://doi.org/10.1016/j.tet.2019.02.013
Article
CAS
Google Scholar
Gröbe G, Ullrich R, Pecyna MJ, Kapturska D, Friedrich S, Hofrichter M, Scheibner K (2011) High-yield production of aromatic peroxygenase by the agaric fungus Marasmius rotula. AMB Express 1(1):1–11. https://doi.org/10.1186/2191-0855-1-31
Article
CAS
Google Scholar
Guengerich FP (2008) Cytochrome P450 and chemical toxicology. Chem Res Toxicol 21(1):70–83. https://doi.org/10.1021/tx700079z
Article
CAS
PubMed
Google Scholar
Guo L, Dial S, Shi L, Branham W, Liu J, Fang JL, Green B, Deng H, Kaput J, Ning B (2011) Similarities and differences in the expression of drug-metabolizing enzymes between human hepatic cell lines and primary human hepatocytes. Drug Metab Dispos 39(3):528–538. https://doi.org/10.1124/dmd.110.035873
Article
CAS
PubMed
PubMed Central
Google Scholar
Hales BF (1982) Comparison of the mutagenicity and teratogenicity of cyclophosphamide and its active metabolites, 4-hydroxycyclophosphamide, phosphoramide mustard, and acrolein. Cancer Res 42(8):3016–3021
CAS
PubMed
Google Scholar
Hilton J (1984) Role of aldehyde dehydrogenase in cyclophosphamide-resistant L1210 leukemia. Cancer Res 44(11):5156–5160
CAS
PubMed
Google Scholar
Hofrichter M, Kellner H, Pecyna MJ, Ullrich R (2015) Fungal unspecific peroxygenases: heme-thiolate proteins that combine peroxidase and cytochrome P450 properties. In: Hrycay EG, Bandiera SM (eds) Monooxygenase, peroxidase and Peroxygenase properties and mechanisms of cytochrome P450. Advances in Experimental Medicine and Biology, vol 851. Springer, Cham, pp 341–368
Chapter
Google Scholar
Hofrichter M, Ullrich R (2014) Oxidations catalyzed by fungal peroxygenases. Curr Opin Chem Biol 19:116–125. https://doi.org/10.1016/j.cbpa.2014.01.015
Article
CAS
PubMed
Google Scholar
Hofrichter M, Ullrich R, Pecyna MJ, Liers C, Lundell T (2010) New and classic families of secreted fungal heme peroxidases. Appl Microbiol Biotechnol 87(3):871–897. https://doi.org/10.1007/s00253-010-2633-0
Article
CAS
PubMed
Google Scholar
Hohorst HJ, Peter G, Struck RF (1976) Synthesis of 4-hydroperoxy derivatives of ifosfamide and trofosfamide by direct ozonation and preliminary antitumor evaluation in vivo. Cancer Res 36(7 PT 1):2278–2281
CAS
PubMed
Google Scholar
Javitt NB (1990) Hep-G2 cells as a resource for metabolic studies - lipoprotein, cholesterol, and bile-acids. FASEB J 4(2):161–168
Article
CAS
Google Scholar
Johansson M, Bielenstein M (1994) Determination of 4-hydroxycyclophosphamide in plasma, as 2,4-dinitrophenylhydrazone derivative of aldophosphamide, by liquid-chromatography. J Chromatogr B 660(1):111–120. https://doi.org/10.1016/0378-4347(94)00283-5
Article
CAS
Google Scholar
Kars MD, Iseri OD, Gunduz U, Ural AU, Arpaci F, Molnar J (2006) Development of rational in vitro models for drug resistance in breast cancer and modulation of MDR by selected compounds. Anticancer Res 26(6B):4559–4568
CAS
PubMed
Google Scholar
Kiebist J, Hofrichter M, Zuhse R, Scheibner K (2019) Oxyfunctionalization of pharmaceuticals by fungal peroxygenases. In: Grunwald P (ed) Pharmaceutical Biocatalysis: Chemoenzymatic of Active Pharmaceutical Ingredients, vol 1. Jenny Stanford Publishing Pte Ltd, Singapore
Google Scholar
Kiebist J, Holla W, Heidrich J, Poraj-Kobielska M, Sandvoss M, Simonis R, Grobe G, Atzrodt J, Hofrichter M, Scheibner K (2015) One-pot synthesis of human metabolites of SAR548304 by fungal peroxygenases. Bioorg Med Chem 23(15):4324–4332. https://doi.org/10.1016/j.bmc.2015.06.035
Article
CAS
PubMed
Google Scholar
Kiebist J, Schmidtke KU, Zimmermann J, Kellner H, Jehmlich N, Ullrich R, Zander D, Hofrichter M, Scheibner K (2017) A peroxygenase from Chaetomium globosum catalyzes the selective oxygenation of testosterone. ChemBioChem 18(6):563–569. https://doi.org/10.1002/cbic.201600677
Article
CAS
PubMed
PubMed Central
Google Scholar
Kinne M, Poraj-Kobielska M, Aranda E, Ullrich R, Hammel KE, Scheibner K, Hofrichter M (2009) Regioselective preparation of 5-hydroxypropranolol and 4'-hydroxydiclofenac with a fungal peroxygenase. Bioorg Med Chem Lett 19(11):3085–3087. https://doi.org/10.1016/j.bmcl.2009.04.015
Article
CAS
PubMed
Google Scholar
Kirchmair J, Göller AH, Lang D, Kunze J, Testa B, Wilson ID, Glen RC, Schneider G (2015) Predicting drug metabolism: experiment and/or computation? Nat Rev Drug Discov 14(6):387–404. https://doi.org/10.1038/nrd4581
Article
CAS
PubMed
Google Scholar
Knowles BB, Howe CC, Aden DP (1980) Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. Science 209(4455):497–499. https://doi.org/10.1126/science.6248960
Article
CAS
PubMed
Google Scholar
Li J, Xu LZ, He KL, Guo WJ, Zheng YH, Xia P, Chen Y (2001) Reversal effects of nomegestrol acetate on multidrug resistance in adriamycin-resistant MCF7 breast cancer cell line. Breast Cancer Res 3(4):253–263. https://doi.org/10.1186/bcr303
Article
CAS
PubMed
PubMed Central
Google Scholar
Litvinas ND, Brodsky BH, Du Bois J (2009) C-H hydroxylation using a heterocyclic catalyst and aqueous H2O2. Angew Chem Int Ed 48(25):4513–4516. https://doi.org/10.1002/anie.200901353
Article
CAS
Google Scholar
Low JE, Borch RF, Sladek NE (1982) Conversion of 4-Hydroperoxycyclophosphamide and 4-Hydroxycyclophosphamide to Phosphoramide Mustard and Acrolein Mediated by Bifunctional Catalysts. Cancer Res 42(3):830–837
CAS
PubMed
Google Scholar
Madsen KG, Olsen J, Skonberg C, Hansen SH, Jurva U (2007) Development and evaluation of an electrochemical method for studying reactive phase-I metabolites: correlation to in vitro drug metabolism. Chem Res Toxicol 20(5):821–831. https://doi.org/10.1021/tx700029u
Article
CAS
PubMed
Google Scholar
Masood MA, Farrant E, Morao I, Bazin M, Perez M, Bunnage ME, Fancy SA, Peakman T (2012) Lead diversification. Application to existing drug molecules: Mifepristone 1 and antalarmin 8. Bioorg Med Chem Lett 22(1):723–728. https://doi.org/10.1016/j.bmcl.2011.10.066
Article
CAS
Google Scholar
Mitra R, Guo Z, Milani M, Mesaros C, Rodriguez M, Nguyen J, Luo X, Clarke D, Lamba J, Schuetz E, Donner DB, Puli N, Falck JR, Capdevila J, Gupta K, Blair IA, Potter DA (2011) CYP3A4 mediates growth of estrogen receptor-positive breast cancer cells in part by inducing nuclear translocation of phospho-Stat3 through biosynthesis of (+/-)-14,15-epoxyeicosatrienoic acid (EET). J Biol Chem 286(20):17543–17559. https://doi.org/10.1074/jbc.M110.198515
Article
CAS
PubMed
PubMed Central
Google Scholar
Molina-Espeja P, Garcia-Ruiz E, Gonzalez-Perez D, Ullrich R, Hofrichter M, Alcalde M (2014) Directed evolution of unspecific peroxygenase from Agrocybe aegerita. Appl Environ Microbiol 80(11):3496–3507. https://doi.org/10.1128/AEM.00490-14
Article
CAS
PubMed
PubMed Central
Google Scholar
Molina-Espeja P, Ma S, Mate DM, Ludwig R, Alcalde M (2015) Tandem-yeast expression system for engineering and producing unspecific peroxygenase. Enzyme Microb Technol 73–74:29–33. https://doi.org/10.1016/j.enzmictec.2015.03.004
Article
CAS
PubMed
Google Scholar
Nedderman AN (2009) Metabolites in safety testing: metabolite identification strategies in discovery and development. Biopharm Drug Dispos 30(4):153–162. https://doi.org/10.1002/bdd.660
Article
CAS
PubMed
Google Scholar
Nicolas I, Bijani C, Brasseur D, Pratviel G, Bernadou J, Robert A (2013) Metalloporphyrin-catalyzed hydroxylation of the N, N-dimethylamide function of the drug molecule SSR180575 to a stable N-methyl-N-carbinolamide. Cr Chim 16(11):1002–1007. https://doi.org/10.1016/j.crci.2013.05.001
Article
CAS
Google Scholar
Nouri-Nigjeh E, Permentier HP, Bischoff R, Bruins AP (2010) Lidocaine oxidation by electrogenerated reactive oxygen species in the light of oxidative drug metabolism. Anal Chem 82(18):7625–7633. https://doi.org/10.1021/ac101364s
Article
CAS
PubMed
Google Scholar
Ohtani T, Nakamura T, Toda K, Furukawa F (2006) Cyclophosphamide enhances TNF-alpha-induced apoptotic cell death in murine vascular endothelial cell. FEBS Lett 580(6):1597–1600. https://doi.org/10.1016/j.febslet.2006.01.092
Article
CAS
PubMed
Google Scholar
Olsavsky KM, Page JL, Johnson MC, Zarbl H, Strom SC, Omiecinski CJ (2007) Gene expression profiling and differentiation assessment in primary human hepatocyte cultures, established hepatoma cell lines, and human liver tissues. Toxicol Appl Pharmacol 222(1):42–56. https://doi.org/10.1016/j.taap.2007.03.032
Article
CAS
PubMed
PubMed Central
Google Scholar
Omole JG, Ayoka OA, Alabi QK, Adefisayo MA, Asafa MA, Olubunmi BO, Fadeyi BA (2018) Protective effect of kolaviron on cyclophosphamide-induced cardiac toxicity in rats. J Evid Based Integr Med 23:1–11. https://doi.org/10.1177/2156587218757649
Article
CAS
Google Scholar
Park BK, Boobis A, Clarke S, Goldring CE, Jones D, Kenna JG, Lambert C, Laverty HG, Naisbitt DJ, Nelson S, Nicoll-Griffith DA, Obach RS, Routledge P, Smith DA, Tweedie DJ, Vermeulen N, Williams DP, Wilson ID, Baillie TA (2011) Managing the challenge of chemically reactive metabolites in drug development. Nat Rev Drug Discov 10(4):292–306. https://doi.org/10.1038/nrd3408
Article
CAS
PubMed
Google Scholar
Pervaiz I, Ahmad S, Madni MA, Ahmad H, Khaliq FH (2013) Microbial biotransformation: a tool for drug designing (Review). Prikl Biokhim Mikrobiol 49(5):435–449. https://doi.org/10.7868/s0555109913050097
Article
CAS
PubMed
Google Scholar
Peter G, Hohorst HJ (1979) Synthesis and preliminary antitumor evaluation of 4-(SR)-sulfido-cyclophosphamides. Cancer Chemother Pharmacol 3(3):181–188. https://doi.org/10.1007/bf00262420
Article
CAS
PubMed
Google Scholar
Piera J, Baeckvall JE (2008) Catalytic oxidation of organic substrates by molecular oxygen and hydrogen peroxide by multistep electron transfer—a biomimetic approach. Angew Chem Int Ed 47(19):3506–3523
Article
CAS
Google Scholar
Poraj-Kobielska M, Atzrodt J, Holla W, Sandvoss M, Grobe G, Scheibner K, Hofrichter M (2013) Preparation of labeled human drug metabolites and drug-drug interaction-probes with fungal peroxygenases. J Labelled Comp Radiopharm 56(9–10):513–519. https://doi.org/10.1002/jlcr.3103
Article
CAS
PubMed
Google Scholar
Poraj-Kobielska M, Kinne M, Ullrich R, Scheibner K, Kayser G, Hammel KE, Hofrichter M (2011) Preparation of human drug metabolites using fungal peroxygenases. Biochem Pharmacol 82(7):789–796. https://doi.org/10.1016/j.bcp.2011.06.020
Article
CAS
PubMed
Google Scholar
Prados J, Melguizo C, Rama AR, Ortiz R, Segura A, Boulaiz H, Velez C, Caba O, Ramos JL, Aranega A (2010) Gef gene therapy enhances the therapeutic efficacy of doxorubicin to combat growth of MCF-7 breast cancer cells. Cancer Chemother Pharmacol 66(1):69–78. https://doi.org/10.1007/s00280-009-1135-1
Article
CAS
PubMed
Google Scholar
Ren S, Yang JS, Kalhorn TF, Slattery JT (1997) Oxidation of cyclophosphamide to 4-hydroxycyclophosphamide and deschloroethylcyclophosphamide in human liver microsomes. Cancer Res 57(19):4229–4235
CAS
PubMed
Google Scholar
Rodriguez-Antona C, Ingelman-Sundberg M (2006) Cytochrome P450 pharmacogenetics and cancer. Oncogene 25(11):1679–1691. https://doi.org/10.1038/sj.onc.1209377
Article
CAS
PubMed
Google Scholar
Sawayama AM, Chen MM, Kulanthaivel P, Kuo MS, Hemmerle H, Arnold FH (2009) A panel of cytochrome P450 BM3 variants to produce drug metabolites and diversify lead compounds. Chem-Eur J 15(43):11723–11729. https://doi.org/10.1002/chem.200900643
Article
CAS
PubMed
Google Scholar
Schadt S, Bister B, Chowdhury SK, Funk C, Hop CE, Humphreys WG, Igarashi F, James AD, Kagan M, Khojasteh SC (2018) A decade in the MIST: learnings from investigations of drug metabolites in drug development under the “metabolites in safety testing” regulatory guidance. Drug Metab Dispos 46(6):865–878
Article
CAS
Google Scholar
Scharer OD (2005) DNA interstrand crosslinks: natural and drug-induced DNA adducts that induce unique cellular responses. ChemBioChem 6(1):27–32. https://doi.org/10.1002/cbic.200400287
Article
CAS
PubMed
Google Scholar
Schroer K, Kittelmann M, Lutz S (2010) Recombinant human cytochrome P450 monooxygenases for drug metabolite synthesis. Biotechnol Bioeng 106(5):699–706. https://doi.org/10.1002/bit.22775
Article
CAS
PubMed
Google Scholar
Shan G, Yang X, Ma L, Rao Y (2012) Pd-catalyzed C-H oxygenation with TFA/TFAA: expedient access to oxygen-containing heterocycles and late-stage drug modification. Angew Chem Int Ed 51(52):13070–13074. https://doi.org/10.1002/anie.201207458
Article
CAS
Google Scholar
Shui-Tein Chen T-LP, Tsai Y-C, Huang C-M (2002) Proteomics reveals protein profile changes in doxorubicin—treated MCF-7 human breast cancer cells. Cancer Lett. https://doi.org/10.1016/s0304-3835(02)00025-3(181):95-107.10.1016/s0304-3835(02)00025-3
Article
PubMed
Google Scholar
Sladek NE, Kollander R, Sreerama L, Kiang DT (2002) Cellular levels of aldehyde dehydrogenases (ALDH1A1 and ALDH3A1) as predictors of therapeutic responses to cyclophosphamide-based chemotherapy of breast cancer: a retrospective study. Rational individualization of oxazaphosphorine-based cancer chemotherapeutic regimens. Cancer Chemother Pharmacol 49(4):309–321. https://doi.org/10.1007/s00280-001-0412-4
Article
CAS
PubMed
Google Scholar
Steinbrecht S, Kammerer S, Küpper JH (2019a) HepG2 cells with recombinant cytochrome P450 enzyme overexpression: Their use and limitation as in vitro liver model. J Cell Biot 5(1):55–64. https://doi.org/10.3233/jcb-189013
Article
Google Scholar
Steinbrecht S, Konig R, Schmidtke KU, Herzog N, Scheibner K, Kruger-Genge A, Jung F, Kammerer S, Kupper JH (2019b) Metabolic activity testing can underestimate acute drug cytotoxicity as revealed by HepG2 cell clones overexpressing cytochrome P450 2C19 and 3A4. Toxicology 412:37–47. https://doi.org/10.1016/j.tox.2018.11.008
Article
CAS
PubMed
Google Scholar
Takamizawa A, Matsumoto S, Iwata T, Tochino Y, Katagiri K, Yamaguchi K, Shiratori O (1975) Studies on cyclophosphamide metabolites and their related compounds. 2. Preparation of an active species of cyclophosphamide and related compounds. J Med Chem 18(4):376–383. https://doi.org/10.1021/jm00238a011
Article
CAS
PubMed
Google Scholar
Trebunova M, Laputkova G, Slaba E, Lacjakova K, Verebova A (2012) Effects of docetaxel, doxorubicin and cyclophosphamide on human breast cancer cell line MCF-7. Anticancer Res 32(7):2849–2854
CAS
PubMed
Google Scholar
Ullrich R, Nuske J, Scheibner K, Spantzel J, Hofrichter M (2004) Novel haloperoxidase from the agaric basidiomycete Agrocybe aegerita oxidizes aryl alcohols and aldehydes. Appl Environ Microbiol 70(8):4575–4581. https://doi.org/10.1128/AEM.70.8.4575-4581.2004
Article
CAS
PubMed
PubMed Central
Google Scholar
Urlacher VB, Girhard M (2012) Cytochrome P450 monooxygenases: an update on perspectives for synthetic application. Trends Biotechnol 30(1):26–36. https://doi.org/10.1016/j.tibtech.2011.06.012
Article
CAS
PubMed
Google Scholar
van der Steen J, Timmer EC, Westra JG, Benckhuysen C (1973) 4-hydroperoxidation in the fenton oxidation of the antitumor agent cyclophosphamide. J Am Chem Soc 95(22):7535–7536
Article
Google Scholar
von Eitzen U, Meier-Tackmann D, Agarwal DP, Goedde HW (1994) Detoxification of cyclophosphamide by human aldehyde dehydrogenase isozymes. Cancer Lett 76(1):45–49. https://doi.org/10.1016/0304-3835(94)90132-5
Article
Google Scholar
Walker D, Brady J, Dalvie D, Davis J, Dowty M, Duncan JN, Nedderman A, Obach RS, Wright P (2009) A holistic strategy for characterizing the safety of metabolites through drug discovery and development. Chem Res Toxicol 22(10):1653–1662. https://doi.org/10.1021/tx900213j
Article
CAS
PubMed
Google Scholar
Wang D, Wang H (2012) Oxazaphosphorine bioactivation and detoxification. The role of xenobiotic receptors. Acta Pharm Sin B 2(2):107–117. https://doi.org/10.1016/j.apsb.2012.02.004
Article
CAS
Google Scholar
Xie HJ, Yasar U, Lundgren S, Griskevicius L, Terelius Y, Hassan M, Rane A (2003) Role of polymorphic human CYP2B6 in cyclophosphamide bioactivation. Pharmacogenomics J 3(1):53–61. https://doi.org/10.1038/sj.tpj.6500157
Article
CAS
PubMed
Google Scholar
Yokoyama Y, Sasaki Y, Terasaki N, Kawataki T, Takekawa K, Iwase Y, Shimizu T, Sanoh S, Ohta S (2018) Comparison of drug metabolism and its related hepatotoxic effects in HepaRG, cryopreserved human hepatocytes, and HepG2 cell cultures. Biol Pharm Bull 41(5):722–732. https://doi.org/10.1248/bpb.b17-00913
Article
CAS
PubMed
Google Scholar
Zollner A, Buchheit D, Meyer MR, Maurer HH, Peters FT, Bureik M (2010) Production of human phase 1 and 2 metabolites by whole-cell biotransformation with recombinant microbes. Bioanalysis 2(7):1277–1290. https://doi.org/10.4155/Bio.10.80
Article
PubMed
Google Scholar