Aga H, Okamoto I, Taniguchi M, Kawashima A, Abe H, Chaen H, Fukuda S (2010) Improved yields of cyclic nigerosylnigerose from starch by pretreatment with a thermostable branching enzyme. J Biosci Bioeng 109 (4):381–387. https://doi.org/10.1016/j.jbiosc.2009.09.047
Article
CAS
Google Scholar
Backer D, Saniez M-H (2003) Soluble highly branched glucose polymers prepared by enzymic modification of starch or starch derivatives. EP1369432A2
Ball SG, Morell MK (2003) From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule. Annu Rev Plant Biol 54:207–233. https://doi.org/10.1146/annurev.arplant.54.031902.134927
Article
CAS
Google Scholar
Ban X, Dhoble AS, Li C, Gu Z, Hong Y, Cheng L, Holler TP, Kaustubh B, Li Z (2020a) Bacterial 1,4-alpha-glucan branching enzymes: characteristics, preparation and commercial applications. Crit Rev Biotechnol 40 (3):380–396. https://doi.org/10.1080/07388551.2020.1713720
Article
CAS
Google Scholar
Ban X, Dhoble AS, Li C, Zhang Y, Gu Z, Cheng L, Hong Y, Li Z (2017) Potassium and sodium ions enhance the activity and thermostability of 1,4-alpha-glucan branching enzyme from Geobacillus thermoglucosidasius in the presence of glycerol. Int J Biol Macromol 102:712–717. https://doi.org/10.1016/j.ijbiomac.2017.04.061
Article
CAS
Google Scholar
Ban X, Li C, Gu Z, Bao C, Qiu Y, Hong Y, Cheng L, Li Z (2016) Expression and biochemical characterization of a thermostable branching enzyme from Geobacillus thermoglucosidans. J Mol Microbiol Biotechnol 26 (5):303–311. https://doi.org/10.1159/000446582
Article
CAS
Google Scholar
Ban X, Li C, Zhang Y, Gu Z, Cheng L, Hong Y, Li Z (2020b) Importance of C-terminal extension in thermophilic 1,4-alpha-glucan branching enzyme from Geobacillus thermoglucosidans STB02. Appl Biochem Biotechnol 190 (3):1010–1022. https://doi.org/10.1007/s12010-019-03150-7
Article
CAS
Google Scholar
Ban X, Liu Y, Zhang Y, Gu Z, Li C, Cheng L, Hong Y, Dhoble AS, Li Z (2018) Thermostabilization of a thermophilic 1,4-alpha-glucan branching enzyme through C-terminal truncation. Int J Biol Macromol 107 (Pt B):1510–1518. https://doi.org/10.1016/j.ijbiomac.2017.10.020
Article
CAS
Google Scholar
Ban X, Wang T, Fan W, Li C, Gu Z, Cheng L, Hong Y, Li Z (2023) Thermostability and catalytic ability enhancements of 1,4-alpha-glucan branching enzyme by introducing salt bridges at flexible amino acid sites. Int J Biol Macromol 224:1276–1282. https://doi.org/10.1016/j.ijbiomac.2022.10.213
Article
CAS
Google Scholar
Ban X, Wu J, Kaustubh B, Lahiri P, Dhoble AS, Gu Z, Li C, Cheng L, Hong Y, Tong Y, Li Z (2020c) Additional salt bridges improve the thermostability of 1,4-alpha-glucan branching enzyme. Food Chem 316:126348. https://doi.org/10.1016/j.foodchem.2020.126348
Article
CAS
Google Scholar
Chengyao X, Yan Q, Chaonan D, Xiaopei C, Yanxin W, Ding L, Xianfeng Y, Jian H, Yan H, Zhongli C, Zhoukun L (2021) Enzymatic properties of an efficient glucan branching enzyme and its potential application in starch modification. Protein Expr Purif 178:105779. https://doi.org/10.1016/j.pep.2020.105779
Article
CAS
Google Scholar
Choi SS, Danielewska-Nikiel B, Kojima I, Takata H (2009) Safety evaluation of 1,4-alpha-glucan branching enzymes from Bacillus stearothermophilus and Aquifex aeolicus expressed in Bacillus subtilis. Food Chem Toxicol 47 (8):2044–2051. https://doi.org/10.1016/j.fct.2009.05.019
Article
CAS
Google Scholar
Englyst HN, Kingman SM, Cummings JH (1992) Classification and measurement of nutritionally important starch fractions. Eur J Clin Nutr 46 (Suppl 2):S33-50
Google Scholar
Fincan SA, Ozdemir S, Karakaya A, Enez B, Mustafov SD, Ulutas MS, Sen F (2021) Purification and characterization of thermostable alpha-amylase produced from Bacillus licheniformis So-B3 and its potential in hydrolyzing raw starch. Life Sci 264:118639. https://doi.org/10.1016/j.lfs.2020.118639
Article
CAS
Google Scholar
Garg SK, Alam MS, Kishan KV, Agrawal P (2007) Expression and characterization of alpha- (1,4)-glucan branching enzyme Rv1326c of Mycobacterium tuberculosis H37Rv. Protein Expr Purif 51 (2):198–208. https://doi.org/10.1016/j.pep.2006.08.005
Article
CAS
Google Scholar
Gilbert RG, Wu AC, Sullivan MA, Sumarriva GE, Ersch N, Hasjim J (2013) Improving human health through understanding the complex structure of glucose polymers. Anal Bioanal Chem 405 (28):8969–8980. https://doi.org/10.1007/s00216-013-7129-1
Article
CAS
Google Scholar
Goff LM, Cowland DE, Hooper L, Frost GS (2013) Low glycaemic index diets and blood lipids: A systematic review and meta-analysis of randomised controlled trials. Nutr Metab Cardiovas 23 (1):1–10. https://doi.org/10.1016/j.numecd.2012.06.002
Article
CAS
Google Scholar
Guan H, Li P, Imparl-Radosevich J, Preiss J, Keeling P (1997) Comparing the properties of Escherichia coli branching enzyme and maize branching enzyme. Arch Biochem Biophys 342 (1):92–98. https://doi.org/10.1006/abbi.1997.0115
Article
CAS
Google Scholar
Guo L, Deng Y, Lu L, Zou F, Cui B (2019) Synergistic effects of branching enzyme and transglucosidase on the modification of potato starch granules. Int J Biol Macromol 130:499–507. https://doi.org/10.1016/j.ijbiomac.2019.02.160
Article
CAS
Google Scholar
Guo L, Hu J, Zhang J, Du X (2016) The role of entanglement concentration on the hydrodynamic properties of potato and sweet potato starches. Int J Biol Macromol 93 (Pt A):1–8. https://doi.org/10.1016/j.ijbiomac.2016.08.075
Article
CAS
Google Scholar
Hayashi M, Suzuki R, Colleoni C, Ball SG, Fujita N, Suzuki E (2015) Crystallization and crystallographic analysis of branching enzymes from Cyanothece sp ATCC 51142. Acta Crystallogr F Struct Biol Commun 71 (8):1109–1113. https://doi.org/10.1107/S2053230X1501198X
Article
CAS
Google Scholar
Henrissat B, Bairoch A (1996) Updating the sequence-based classification of glycosyl hydrolases. Biochem J 316 (Pt 2):695–696. https://doi.org/10.1042/bj3160695
Article
Google Scholar
Hong MG, Yoo SH, Lee BH (2022) Effect of highly branched alpha-glucans synthesized by dual glycosyltransferases on the glucose release rate. Carbohydr Polym 278:119016. https://doi.org/10.1016/j.carbpol.2021.119016
Article
CAS
Google Scholar
Horchani H, Bussieres S, Cantin L, Lhor M, Laliberte-Gemme JS, Breton R (2014) Enzymatic activity of Lecithin:retinol acyltransferase: a thermostable and highly active enzyme with a likely mode of interfacial activation. Biochim Biophys Acta 6:1128–1136. https://doi.org/10.1016/j.bbapap.2014.02.022
Article
CAS
Google Scholar
Huynh N, Ou Q, Cox P, Lill R, King-Jones K (2019) Glycogen branching enzyme controls cellular iron homeostasis via Iron Regulatory Protein 1 and mitoNEET. Nat Commun 10 (1):5463. https://doi.org/10.1038/s41467-019-13237-8
Article
CAS
Google Scholar
Ioannou JC, Donald AM, Tromp RH (2015) Characterising the secondary structure changes occurring in high density systems of BLG dissolved in aqueous pH 3 buffer. Food Hydrocolloid 46:216–225
Article
CAS
Google Scholar
Janecek S, Marecek F, MacGregor EA, Svensson B (2019) Starch-binding domains as CBM families-history, occurrence, structure, function and evolution. Biotechnol Adv. https://doi.org/10.1016/j.biotechadv.2019.107451
Article
Google Scholar
Janecek S, Svensson B, MacGregor EA (2014) alpha-Amylase: an enzyme specificity found in various families of glycoside hydrolases. Cell Mol Life Sci 71 (7):1149–1170. https://doi.org/10.1007/s00018-013-1388-z
Article
CAS
Google Scholar
Jiang H, Miao M, Ye F, Jiang B, Zhang T (2014) Enzymatic modification of corn starch with 4-alpha-glucanotransferase results in increasing slow digestible and resistant starch. Int J Biol Macromol 65:208–214. https://doi.org/10.1016/j.ijbiomac.2014.01.044
Article
CAS
Google Scholar
Jo AR, Kim HR, Choi SJ, Lee JS, Chung MN, Han SK, Park CS, Moon TW (2016a) Preparation of slowly digestible sweet potato Daeyumi starch by dual enzyme modification. Carbohydr Polym 143:164–171. https://doi.org/10.1016/j.carbpol.2016.02.021
Article
CAS
Google Scholar
Jo AR, Kim HR, Choi SJ, Lee JS, Chung MN, Han SK, Park CS, Moon TW (2016b) Preparation of slowly digestible sweet potato Daeyumi starch by dual enzyme modification. Carbohyd Polym 143:164–171. https://doi.org/10.1016/j.carbpol.2016.02.021
Article
CAS
Google Scholar
Kajiura H, Kakutani R, Akiyama T, Takata H, Kuriki T (2009) A novel enzymatic process for glycogen production. Biocatal Biotransform 26 (1–2):133–140. https://doi.org/10.1080/10242420701789411
Article
CAS
Google Scholar
Keeratiburana T, Hansen AR, Soontaranon S, Blennow A, Tongta S (2020) Pre-treatment of granular rice starch to enhance branching enzyme catalysis. Carbohydr Polym 247:116741. https://doi.org/10.1016/j.carbpol.2020.116741
Article
CAS
Google Scholar
Kiel JA, Boels JM, Beldman G, Venema G (1991) Molecular cloning and nucleotide sequence of the glycogen branching enzyme gene (glgB) from Bacillus stearothermophilus and expression in Escherichia coli and Bacillus subtilis. Mol Gen Genet 230 (1–2):136–144. https://doi.org/10.1007/BF00290661
Article
CAS
Google Scholar
Kim EJ, Ryu SI, Bae HA, Huong NT, Lee SB (2008) Biochemical characterisation of a glycogen branching enzyme from Streptococcus mutans: Enzymatic modification of starch. Food Chem 110 (4):979–984. https://doi.org/10.1016/j.foodchem.2008.03.025
Article
CAS
Google Scholar
Kittisuban P, Lee BH, Suphantharika M, Hamaker BR (2014) Slow glucose release property of enzyme-synthesized highly branched maltodextrins differs among starch sources. Carbohyd Polym 107:182–191. https://doi.org/10.1016/j.carbpol.2014.02.033
Article
CAS
Google Scholar
Le QT, Lee CK, Kim YW, Lee SJ, Zhang R, Withers SG, Kim YR, Auh JH, Park KH (2009) Amylolytically-resistant tapioca starch modified by combined treatment of branching enzyme and maltogenic amylase. Carbohyd Polym 75 (1):9–14. https://doi.org/10.1016/j.carbpol.2008.06.001
Article
CAS
Google Scholar
Lee BH, Yan L, Phillips RJ, Reuhs BL, Jones K, Rose DR, Nichols BL, Quezada-Calvillo R, Yoo SH, Hamaker BR (2013a) Enzyme-synthesized highly branched maltodextrins have slow glucose generation at the mucosal alpha-glucosidase level and are slowly digestible in vivo. PLoS ONE 8:e59745. https://doi.org/10.1371/journal.pone.0059745
Article
CAS
Google Scholar
Lee BH, Yan L, Phillips RJ, Reuhs BL, Jones K, Rose DR, Nichols BL, Quezada-Calvillo R, Yoo SH, Hamaker BR (2013b) Enzyme-synthesized highly branched maltodextrins have slow glucose generation at the mucosal alpha-glucosidase level and are slowly digestible in vivo. PLoS ONE 8 (4):e59745. https://doi.org/10.1371/journal.pone.0059745
Article
CAS
Google Scholar
Lee CK, Le QT, Kim YH, Shim JH, Lee SJ, Park JH, Lee KP, Song SH, Auh JH, Lee SJ, Park KH (2008) Enzymatic synthesis and properties of highly branched rice starch amylose and amylopectin cluster. J Agric Food Chem 56 (1):126–131. https://doi.org/10.1021/jf072508s
Article
CAS
Google Scholar
Li C, Ban X, Zhang Y, Gu Z, Hong Y, Cheng L, Tang X, Li Z (2020a) Rational Design of Disulfide Bonds for Enhancing the Thermostability of the 1,4-alpha-Glucan Branching Enzyme from Geobacillus thermoglucosidans STB02. J Agric Food Chem 68 (47):13791–13797. https://doi.org/10.1021/acs.jafc.0c04798
Article
CAS
Google Scholar
Li L, Su L, Hu F, Chen S, Wu J (2020b) Recombinant expression and characterization of the glycogen branching enzyme from Vibrio vulnificus and its application in starch modification. Int J Biol Macromol 155:987–994. https://doi.org/10.1016/j.ijbiomac.2019.11.062
Article
CAS
Google Scholar
Li WW, Li CM, Gu ZB, Qiu YJ, Cheng L, Hong Y, Li ZF (2016) Relationship between structure and retrogradation properties of corn starch treated with 1,4-alpha-glucan branching enzyme. Food Hydrocolloid 52:868–875. https://doi.org/10.1016/j.foodhyd.2015.09.009
Article
CAS
Google Scholar
Li X, Miao M, Jiang H, Xue J, Jiang B, Zhang T, Gao Y, Jia Y (2014a) Partial branching enzyme treatment increases the low glycaemic property and alpha-1,6 branching ratio of maize starch. Food Chem 164:502–509. https://doi.org/10.1016/j.foodchem.2014.05.074
Article
CAS
Google Scholar
Li Y, Ren J, Liu J, Sun L, Wang Y, Liu B, Li C, Li Z (2018) Modification by alpha-d-glucan branching enzyme lowers the in vitro digestibility of starch from different sources. Int J Biol Macromol 107 (Pt B):1758–1764. https://doi.org/10.1016/j.ijbiomac.2017.10.049
Article
CAS
Google Scholar
Lighezan L, Georgieva R, Neagu A (2016) The secondary structure and the thermal unfolding parameters of the S-layer protein from Lactobacillus salivarius. Eur Biophys J 45 (6):491–509. https://doi.org/10.1007/s00249-016-1117-2
Article
CAS
Google Scholar
Ludwig DS (2002) The glycemic index: physiological mechanisms relating to obesity, diabetes, and cardiovascular disease. JAMA 287 (18):2414–2423. https://doi.org/10.1001/jama.287.18.2414
Article
CAS
Google Scholar
Man RC, Ismail AF, Ghazali NF, Fuzi SFZM, Illias RM (2015) Effects of the immobilization of recombinant Escherichia coli on cyclodextrin glucanotransferase (CGTase) excretion and cell viability. Biochem Eng J 98:91–98. https://doi.org/10.1016/j.bej.2015.02.013
Article
CAS
Google Scholar
Miao M, Jiang B, Cui SW, Zhang T, Jin Z (2015) Slowly digestible starch–a review. Crit Rev Food Sci Nutr 55 (12):1642–1657. https://doi.org/10.1080/10408398.2012.704434
Article
CAS
Google Scholar
Mohtar NS, Abdul Rahman MB, Raja A, Rahman RN, Leow TC, Salleh AB, MatIsa MN (2016) Expression and characterization of thermostable glycogen branching enzyme from Geobacillus mahadia Geo-05. PeerJ 4:e2714. https://doi.org/10.7717/peerj.2714
Article
CAS
Google Scholar
Na S, Park M, Jo I, Cha J, Ha NC (2017) Structural basis for the transglycosylase activity of a GH57-type glycogen branching enzyme from Pyrococcus horikoshii. Biochem Bioph Res Co 484 (4):850–856. https://doi.org/10.1016/j.bbrc.2017.02.002
Article
CAS
Google Scholar
Pal K, Kumar S, Sharma S, Garg SK, Alam MS, Xu HE, Agrawal P, Swaminathan K (2010a) Crystal Structure of Full-length Mycobacterium tuberculosis H37Rv Glycogen Branching enzyme insights of n-terminal beta-sandwich in substrate specificity and enzymatic activity. J Biol Chem 285 (27):20897–20903. https://doi.org/10.1074/jbc.M110.121707
Article
CAS
Google Scholar
Pal K, Kumar S, Sharma S, Garg SK, Alam MS, Xu HE, Agrawal P, Swaminathan K (2010b) Crystal structure of full-length Mycobacterium tuberculosis H37Rv glycogen branching enzyme: insights of N-terminal beta-sandwich in substrate specificity and enzymatic activity. J Biol Chem 285 (27):20897–20903. https://doi.org/10.1074/jbc.M110.121707
Article
CAS
Google Scholar
Palomo M, Kralj S, van der Maarel MJ, Dijkhuizen L (2009) The unique branching patterns of Deinococcus glycogen branching enzymes are determined by their N-terminal domains. Appl Environ Microbiol 75 (5):1355–1362. https://doi.org/10.1128/AEM.02141-08
Article
CAS
Google Scholar
Palomo M, Pijning T, Booiman T, Dobruchowska JM, van der Vlist J, Kralj S, Planas A, Loos K, Kamerling JP, Dijkstra BW, van der Maarel MJEC, Dijkhuizen L, Leemhuis H (2011) Thermus thermophilus Glycoside Hydrolase Family 57 Branching enzyme crystal structure, mechanism of action, and products formed. J Biol Chem 286 (5):3520–3530. https://doi.org/10.1074/jbc.M110.179515
Article
CAS
Google Scholar
Park I, Park M, Yoon N, Cha J (2019) Comparison of the structural properties and nutritional fraction of corn starch treated with thermophilic GH13 and GH57 alpha-Glucan Branching Enzymes. Foods 8:10. https://doi.org/10.3390/foods8100452
Article
CAS
Google Scholar
Peng H, Qian LM, Fu ZJ, Xin L, Hua Z, Woolf J, Xiao YZ, Gao Y (2021) Using a novel hyperthermophilic amylopullulanase to simplify resistant starch preparation from rice starches. J Funct Foods. https://doi.org/10.1016/j.jff.2021.104429
Article
Google Scholar
Ping LF, Chen XY, Yuan XL, Zhang M, Chai YJ, Shan SD (2017) Application and comparison in biosynthesis and biodegradation by Fusarium solani and Aspergillus fumigatus cutinases. Int J Biol Macromol 104:1238–1245. https://doi.org/10.1016/j.ijbiomac.2017.06.118
Article
CAS
Google Scholar
Roussel X, Lancelon-Pin C, Vikso-Nielsen A, Rolland-Sabate A, Grimaud F, Potocki-Veronese G, Buleon A, Putaux JL (2013a) Characterization of substrate and product specificity of the purified recombinant glycogen branching enzyme of Rhodothermus obamensis. Biochim Biophys Acta 1:2167–2177. https://doi.org/10.1016/j.bbagen.2012.09.022
Article
CAS
Google Scholar
Roussel X, Lancelon-Pin C, Vikso-Nielsen A, Rolland-Sabate A, Grimaud F, Potocki-Veronese G, Buleon A, Putaux JL (2013b) Characterization of substrate and product specificity of the purified recombinant glycogen branching enzyme of Rhodothermus obamensis. Bba-Gen Subjects 1:2167–2177. https://doi.org/10.1016/j.bbagen.2012.09.022
Article
CAS
Google Scholar
Rumbak E, Rawlings DE, Lindsey GG, Woods DR (1991) Characterization of the Butyrivibrio fibrisolvens glgB gene, which encodes a glycogen-branching enzyme with starch-clearing activity. J Bacteriol 173 (21):6732–6741. https://doi.org/10.1128/jb.173.21.6732-6741.1991
Article
CAS
Google Scholar
Santos CR, Tonoli CCC, Trindade DM, Betzel C, Takata H, Kuriki T, Kanai T, Imanaka T, Arni RK, Murakami MT (2011) Structural basis for branching-enzyme activity of glycoside hydrolase family 57: Structure and stability studies of a novel branching enzyme from the hyperthermophilic archaeon Thermococcus Kodakaraensis KOD1. Proteins-Structure Function and Bioinformatics 79 (2):547–557. https://doi.org/10.1002/prot.22902
Article
CAS
Google Scholar
Sawada T, Itoh M, Nakamura Y (2018) Contributions of three starch branching enzyme isozymes to the fine structure of amylopectin in rice endosperm. Front Plant Sci 9:547
Article
Google Scholar
Shin HJ, Choi SJ, Park CS, Moon TW (2010) Preparation of starches with low glycaemic response using amylosucrase and their physicochemical properties. Carbohyd Polym 82 (2):489–497. https://doi.org/10.1016/j.carbpol.2010.05.017
Article
CAS
Google Scholar
Suzuki E, Suzuki R (2016) Distribution of glucan-branching enzymes among prokaryotes. Cell Mol Life Sci 73 (14):2643–2660.
Article
CAS
Google Scholar
Takata H, Akiyama T, Kajiura H, Kakutani R, Furuyashiki T, Tomioka E, Kojima I, Kuriki T (2010) Application of branching enzyme in starch processing. Biocatal Biotransform 28 (1):60–63
Article
CAS
Google Scholar
Takata H, Takaha T, Kuriki T, Okada S, Takagi M, Imanaka T (1994) Properties and active center of the thermostable branching enzyme from Bacillus stearothermophilus. Appl Environ Microbiol 60 (9):3096–3104. https://doi.org/10.1128/aem.60.9.3096-3104.1994
Article
CAS
Google Scholar
Takata H, Takaha T, Okada S, Takagi M, Imanaka T (1996) Cyclization reaction catalyzed by branching enzyme. J Bacteriol 178 (6):1600–1606. https://doi.org/10.1128/jb.178.6.1600-1606.1996
Article
CAS
Google Scholar
Tester RF, Karkalas J, Qi X (2004) Starch structure and digestibility enzyme-substrate relationship. World Poultry Sci J 60 (2):186–195. https://doi.org/10.1079/Wps200312
Article
Google Scholar
Thiemann V, Saake B, Vollstedt A, Schafer T, Puls J, Bertoldo C, Freudl R, Antranikian G (2006) Heterologous expression and characterization of a novel branching enzyme from the thermoalkaliphilic anaerobic bacterium Anaerobranca gottschalkii. Appl Microbiol Biotechnol 72 (1):60–71. https://doi.org/10.1007/s00253-005-0248-7
Article
CAS
Google Scholar
van der Maarel MJ, van der Veen B, Uitdehaag JC, Leemhuis H, Dijkhuizen L (2002) Properties and applications of starch-converting enzymes of the alpha-amylase family. J Biotechnol 94 (2):137–155. https://doi.org/10.1016/s0168-1656(01)00407-2
Article
Google Scholar
Van der Maarel MJEC, Ter Veer BCA, Vrieling-Smit A, Delnoye DAP (2014) Methods and means for coating paper by film coating. WO2014003556A1
Van der Maarel MJEC, Vos A, Sanders P, Dijkhuizen L (2003) Properties of the glucan branching enzyme of the hyperthermophilic bacterium Aquifex aeolicus. Biocatal Biotransform 21 (4–5):199–207. https://doi.org/10.1080/10242420310001618528
Article
Google Scholar
Wang Z, Xin C, Li C, Gu Z, Cheng L, Hong Y, Ban X, Li Z (2019) Expression and characterization of an extremely thermophilic 1,4-alpha-glucan branching enzyme from Rhodothermus obamensis STB05. Protein Expr Purif 164:105478. https://doi.org/10.1016/j.pep.2019.105478
Article
CAS
Google Scholar
Wickramasinghe HAM, Blennow A, Noda T (2009) Physico-chemical and degradative properties of in-planta re-structured potato starch. Carbohyd Polym 77 (1):118–124. https://doi.org/10.1016/j.carbpol.2008.12.013
Article
CAS
Google Scholar
Wu S, Liu Y, Yan Q, Jiang Z (2014) Gene cloning, functional expression and characterisation of a novel glycogen branching enzyme from Rhizomucor miehei and its application in wheat breadmaking. Food Chem 159:85–94. https://doi.org/10.1016/j.foodchem.2014.02.161
Article
CAS
Google Scholar
Xia C, Zhong L, Wang J, Zhang L, Chen X, Ji H, Ma S, Dong W, Ye X, Huang Y, Li Z, Cui Z (2021) Structural and digestion properties of potato starch modified using an efficient starch branching enzyme AqGBE. Int J Biol Macromol 184:551–557. https://doi.org/10.1016/j.ijbiomac.2021.06.135
Article
CAS
Google Scholar
Xiao Y, Shen M, Luo Y, Ren Y, Han X, Xie J (2020) Effect of Mesona chinensis polysaccharide on the pasting, rheological, and structural properties of tapioca starch varying in gelatinization temperatures. Int J Biol Macromol 156:137–143. https://doi.org/10.1016/j.ijbiomac.2020.04.041
Article
CAS
Google Scholar
Yang G, Yang D, Wang X, Cao W (2021) A novel thermostable cellulase-producing Bacillus licheniformis A5 acts synergistically with Bacillus subtilis B2 to improve degradation of Chinese distillers’ grains. Bioresour Technol 325:124729. https://doi.org/10.1016/j.biortech.2021.124729
Article
CAS
Google Scholar
Yang S, Qiaojuan Y, Jiang Z, Fan G, Wang L (2008) Biochemical characterization of a novel thermostable beta-1,3–1,4-glucanase (lichenase) from Paecilomyces thermophila. J Agric Food Chem 56 (13):5345–5351. https://doi.org/10.1021/jf800303b
Article
CAS
Google Scholar
Ye X, Liu W, Ma S, Chen X, Qiao Y, Zhao Y, Fan Q, Li X, Dong C, Fang X, Huan M, Han J, Huang Y, Cui Z, Li Z (2021) Expression and characterization of 1,4-alpha-glucan branching enzyme from Microvirga sp MC18 and its application in the preparation of slowly digestible starch. Protein Expr Purif 185:105898. https://doi.org/10.1016/j.pep.2021.105898
Article
CAS
Google Scholar
Zeeman SC, Kossmann J, Smith AM (2010) Starch: its metabolism, evolution, and biotechnological modification in plants. Annu Rev Plant Biol 61:209–234. https://doi.org/10.1146/annurev-arplant-042809-112301
Article
CAS
Google Scholar
Zhang X, Leemhuis H, van der Maarel M (2019) Synthesis of highly branched alpha-glucans with different structures using GH13 and GH57 glycogen branching enzymes. Carbohydr Polym 216:231–237. https://doi.org/10.1016/j.carbpol.2019.04.038
Article
CAS
Google Scholar
Zhang Z, Yang J, Xie P, Gao Y, Bai J, Zhang C, Liu L, Wang Q, Gao X (2020) Characterization of a thermostable phytase from Bacillus licheniformis WHU and further stabilization of the enzyme through disulfide bond engineering. Enzyme Microb Technol 142:109679. https://doi.org/10.1016/j.enzmictec.2020.109679
Article
CAS
Google Scholar
Zhou W, Zhao S, He S, Ma Q, Lu X, Hao X, Wang H, Yang J, Zhang P (2020) Production of very-high-amylose cassava by post-transcriptional silencing of branching enzyme genes. J Integr Plant Biol 62 (6):832–846. https://doi.org/10.1111/jipb.12848
Article
CAS
Google Scholar