Asghar A, Butt MS, Shahid M, Huang Q (2017) Evaluating the antimicrobial potential of green cardamom essential oil focusing on quorum sensing inhibition of Chromobacterium violaceum. J Food Sci Technol 54(8):2306–2315
Article
PubMed
PubMed Central
CAS
Google Scholar
Bazargani MM, Rohloff J (2016) Antibiofilm activity of essential oils and plant extracts against Staphylococcus aureus and Escherichia coli biofilms. Food Control 61:156–164
Article
CAS
Google Scholar
Borriss R, Danchin A, Harwood CR, Médigue C, Rocha EP, Sekowska A, Vallenet D (2018) Bacillus subtilis, the model Gram-positive bacterium: 20 years of annotation refinement. Microb Biotechnol 11(1):3–17
Article
PubMed
Google Scholar
Budzyńska A, Wieckowska-Szakiel M, Sadowska B, Kalemba D, Rozalska B (2011) Antibiofilm activity of selected plant essential oils and their major components. Pol J Microbiol 60(1):35–41
Article
PubMed
Google Scholar
Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol 94(3):223–253
Article
CAS
PubMed
Google Scholar
Chaieb K, Kouidhi B, Jrah H, Mahdouani K, Bakhrouf A (2011) Antibacterial activity of Thymoquinone, an active principle of Nigella sativa and its potency to prevent bacterial biofilm formation. BMC Compl Altern Med 11(1):1–6
Article
CAS
Google Scholar
Chang S-T, Chen P-F, Chang S-C (2001) Antibacterial activity of leaf essential oils and their constituents from Cinnamomum osmophloeum. J Ethnopharmacol 77(1):123–127
Article
CAS
PubMed
Google Scholar
Chemsa AE, Zellagui A, Öztürk M, Ebru E, Ceylan O, Duru ME (2018) The chemical composition of Centaurea furfuracea Coss. and Dur. essential oil with antioxidant, anticholinesterase and antibiofilm activities. J Ongo Chem Res 3(2):54–63
Google Scholar
Chrysargyris A, Mikallou M, Petropoulos S, Tzortzakis N (2020) Profiling of essential oils components and polyphenols for their antioxidant activity of medicinal and aromatic plants grown in different environmental conditions. Agronomy 10(5):727–729
Article
CAS
Google Scholar
de Oliveira MMM, Brugnera DF, do Nascimento JA, Batista NN, Piccoli RH (2012) Cinnamon essential oil and cinnamaldehyde in the control of bacterial biofilms formed on stainless steel surfaces. Eur Food Res Technol 234(5):821–832
Article
CAS
Google Scholar
Delaquis PJ, Stanich K (2004) Antilisterial properties of cilantro essential oil. J Essent Oil Res 16(5):409–414
Article
CAS
Google Scholar
Dhara L, Tripathi A (2013) Antimicrobial activity of eugenol and cinnamaldehyde against extended spectrum beta lactamase producing enterobacteriaceae by in vitro and molecular docking analysis. Eur J Integr Med 5(6):527–536
Article
Google Scholar
Dubois-Brissonnet F, Trotier E, Briandet R (2016) The biofilm lifestyle involves an increase in bacterial membrane saturated fatty acids. Front Microbiol 7:1673–1684
Article
PubMed
PubMed Central
Google Scholar
Espina L, Pagán R, López D, García-Gonzalo D (2015) Individual constituents from essential oils inhibit biofilm mass production by multi-drug resistant Staphylococcus aureus. Molecules 20(6):11357–11372
Article
CAS
PubMed
PubMed Central
Google Scholar
Fahimi S, Hajimehdipoor H, Shabanpoor H, Bagheri F, Shekarchi M (2015) Synergic antibacterial activity of some essential oils from Lamiaceae. RJP 2(3):23–29
Google Scholar
Fei L, Y-c D, X-q Ye, Y-t D (2011) Antibacterial effect of cinnamon oil combined with thyme or clove oil. ASC 10(9):1482–1487
Google Scholar
Felipe V, Breser ML, Bohl LP, da Silva ER, Morgante CA, Correa SG, Porporatto C (2019) Chitosan disrupts biofilm formation and promotes biofilm eradication in Staphylococcus species isolated from bovine mastitis. Int J Biol Macromol 126:60–67
Article
CAS
PubMed
Google Scholar
Firmino DF, Cavalcante TT, Gomes GA, Firmino N, Rosa LD, de Carvalho MG, Catunda FE Jr (2018) Antibacterial and antibiofilm activities of Cinnamomum Sp. essential oil and cinnamaldehyde: antimicrobial activities. Sci World J 2018:1–9
Article
CAS
Google Scholar
Fong JN, Yildiz FH (2015) Biofilm matrix proteins. Microbiol Spectr 3(2):201–222
Article
CAS
Google Scholar
Fong JC, Karplus K, Schoolnik GK, Yildiz FH (2006) Identification and characterization of RbmA, a novel protein required for the development of rugose colony morphology and biofilm structure in Vibrio cholerae. J Bacteriol 188(3):1049–1059
Article
CAS
PubMed
PubMed Central
Google Scholar
Frozi JB, Esper LMR, Franco RM (2017) Single-and multispecies biofilms by Escherichia coli, Staphylococcus aureus, and Salmonella spp. isolated from raw fish and a fish processing unit. Cienc Rural 47(10):1–6
Article
Google Scholar
Gill AO, Holley RA (2004) Mechanisms of bactericidal action of cinnamaldehyde against Listeria monocytogenes and of eugenol against L. monocytogenes and Lactobacillus sakei. Appl Environ Microbiol 70(10):5750–5760
Article
CAS
PubMed
PubMed Central
Google Scholar
Gutierrez J, Barry-Ryan C, Bourke P (2009) Antimicrobial activity of plant essential oils using food model media: efficacy, synergistic potential and interactions with food components. Food Microbiol 26(2):142–150
Article
CAS
PubMed
Google Scholar
Haydon DJ, Stokes NR, Ure R, Galbraith G, Bennett JM, Brown DR, Baker PJ, Barynin VV, Rice DW, Sedelnikova SE (2008) An inhibitor of FtsZ with potent and selective anti-Staphylococcal activity. Science 321(5896):1673–1675
Article
CAS
PubMed
Google Scholar
Helander IM, Alakomi H-L, Latva-Kala K, Koski P (1997) Polyethyleneimine is an effective permeabilizer of gram-negative bacteria. Microbiol 143(10):3193–3199
Article
CAS
Google Scholar
Helander IM, Alakomi H-L, Latva-Kala K, Mattila-Sandholm T, Pol I, Smid EJ, Gorris LG, von Wright A (1998) Characterization of the action of selected essential oil components on Gram-negative bacteria. J Agric Food Chem 46(9):3590–3595
Article
CAS
Google Scholar
Jamal A, Javed K, Aslam M, Jafri M (2006) Gastroprotective effect of cardamom, Elettaria cardamomum Maton. fruits in rats. J Ethnopharmacol 103(2):149–153
Article
CAS
PubMed
Google Scholar
Kerekes EB, Vidács A, Takó M, Petkovits T, Vágvölgyi C, Horváth G, Balázs VL, Krisch J (2019) Anti-biofilm effect of selected essential oils and main components on mono-and polymicrobic bacterial cultures. Microorganisms 7(9):345–356
Article
CAS
PubMed Central
Google Scholar
Kon K, Rai M (2012) Antibacterial activity of Thymus vulgaris essential oil alone and in combination with other essential oils. Nusantara Biosci 4(2):55–65
Google Scholar
Kotan R, Kordali S, Cakir A (2007) Screening of antibacterial activities of twenty-one oxygenated monoterpenes. Z Naturforsch 62(7–8):507–513
Article
CAS
Google Scholar
Kwieciński J, Eick S, Wójcik K (2009) Effects of tea tree (Melaleuca alternifolia) oil on Staphylococcus aureus in biofilms and stationary growth phase. Int J Antimicrob Agents 33(4):343–347
Article
PubMed
CAS
Google Scholar
Lis-Balchin M, Deans S (1997) Bioactivity of selected plant essential oils against Listeria monocytogenes. J Appl Microbiol 82(6):759–762
Article
CAS
PubMed
Google Scholar
Loolaie M, Moasefi N, Rasouli H, Adibi H (2017) Peppermint and its functionality: a review. Arch Clin Microbiol 8(4):54–66
Google Scholar
Lv F, Liang H, Yuan Q, Li C (2011) In vitro antimicrobial effects and mechanism of action of selected plant essential oil combinations against four food-related microorganisms. Food Res Int 44(9):3057–3064
Article
CAS
Google Scholar
Maestre-Reyna M, Wu W-J, Wang AH-J (2013) Structural insights into RbmA, a biofilm scaffolding protein of V. cholerae. PLoS ONE 8(12):e82458–e82470
Article
PubMed
PubMed Central
CAS
Google Scholar
Mann C, Cox S, Markham J (2000) The outer membrane of Pseudomonas aeruginosa NCTC 6749 contributes to its tolerance to the essential oil of Melaleuca alternifolia (tea tree oil). Lett Appl Microbiol 30(4):294–297
Article
CAS
PubMed
Google Scholar
Millezi AF, Costa KAD, Oliveira JM, Lopes SP, Pereira MO, Piccoli RH (2019) Antibacterial and anti-biofilm activity of cinnamon essential oil and eugenol. Cienc Rural 49(1):1–6
Article
CAS
Google Scholar
Mourey A, Canillac N (2002) Anti-Listeria monocytogenes activity of essential oils components of conifers. Food Control 13(4–5):289–292
Article
CAS
Google Scholar
Muslim SN, Kadmy IMA, Ali ANM, Salman BK, Ahmad M, Khazaal SS, Hussein NH, Muslim SN (2018) Chitosan extracted from Aspergillus flavus shows synergistic effect, eases quorum sensing mediated virulence factors and biofilm against nosocomial pathogen Pseudomonas aeruginosa. Int J Biol Macromol 107:52–58
Article
CAS
PubMed
Google Scholar
Nakamura A, Komatsu M, Ohno Y, Noguchi N, Kondo A, Hatano N (2019) Identification of specific protein amino acid substitutions of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli ST131: a proteomics approach using mass spectrometry. Sci Rep 9(1):1–8
Google Scholar
Nazzaro F, Fratianni F, De Martino L, Coppola R, De Feo V (2013) Effect of essential oils on pathogenic bacteria. Pharm 6(12):1451–1474
Google Scholar
Nuryastuti T, van der Mei HC, Busscher HJ, Iravati S, Aman AT, Krom BP (2009) Effect of cinnamon oil on icaA expression and biofilm formation by Staphylococcus epidermidis. Appl Environ Microbiol 75(21):6850–6862
Article
CAS
PubMed
PubMed Central
Google Scholar
Oh S, Yun W, Lee J, Lee C, Kwak W, Cho J (2017) Effects of essential oil (blended and single essential oils) on anti-biofilm formation of Salmonella and Escherichia coli. J Anim Sci Technol 59(1):1–5
Article
CAS
Google Scholar
Ooi LS, Li Y, Kam S-L, Wang H, Wong EY, Ooi VE (2006) Antimicrobial activities of cinnamon oil and cinnamaldehyde from the Chinese medicinal herb Cinnamomum cassia Blume. AJCMB 34(03):511–522
CAS
Google Scholar
Oral NB, Vatansever L, Aydin BD, Sezer C, Guven A, Gumez M, Kurkcuoglu M (2010) Effect of oregano essential oil on biofilms formed by Staphylococci and Escherichia coli. Kafkas Univ Vet Fak Derg 16(Suppl-A):S23–S29
Google Scholar
Oussalah M, Caillet S, Saucier L, Lacroix M (2007) Inhibitory effects of selected plant essential oils on the growth of four pathogenic bacteria: E. coli O157: H7, Salmonella typhimurium, Staphylococcus aureus and Listeria monocytogenes. Food Control 18(5):414–420
Article
CAS
Google Scholar
Pandey MK, Sharma RK, Lata S (2011) Antibacterial activity of Eclipta alba (L.) Hassk. J Appl Pharm Sci 1(7):14–23
Google Scholar
Perez-Conesa D, McLandsborough L, Weiss J (2006) Inhibition and inactivation of Listeria monocytogenes and Escherichia coli O157: H7 colony biofilms by micellar-encapsulated eugenol and carvacrol. J Food Prot 69(12):2947–2954
Article
CAS
PubMed
Google Scholar
Pettit RK, Weber CA, Kean MJ, Hoffmann H, Pettit GR, Tan R, Franks KS, Horton ML (2005) Microplate Alamar blue assay for Staphylococcus epidermidis biofilm susceptibility testing. Antimicrob Agents Chemother 49(7):2612–2622
Article
CAS
PubMed
PubMed Central
Google Scholar
Pratiwi SUT, Lagendijk EL, de Weert S, Idroes R, Hertiani T, Van den Hondel C (2015) Effect of Cinnamomum burmannii Nees ex Bl. and Massoia aromatica Becc. Essential oils on planktonic growth and biofilm formation of Pseudomonas aeruginosa and Staphylococcus aureus in vitro. Int J Appl Res Nat Prod 8(2):1–13
Google Scholar
Qiu X, Janson CA, Smith WW, Head M, Lonsdale J, Konstantinidis AK (2001) Refined structures of β-ketoacyl-acyl carrier protein synthase III. J Mol Biol 307(1):341–356
Article
CAS
PubMed
Google Scholar
Rangasamy O, Raoelison G, Rakotoniriana FE, Cheuk K, Urverg-Ratsimamanga S, Quetin-Leclercq J, Gurib-Fakim A, Subratty AH (2007) Screening for anti-infective properties of several medicinal plants of the Mauritians flora. J Ethnopharmacol 109(2):331–337
Article
PubMed
Google Scholar
Rasouli H, Mehrabi M, Arab SS, Khodarahmi R (2017) Are Pro 8/Pro 18 really critical for functional dynamic behavior of human endostatin N-terminal peptide? A comparative molecular dynamics study. J Iran Chem Soc 14(9):2023–2039
Article
CAS
Google Scholar
Rasouli H, Hosseini Ghazvini SMB, Yarani R, Altıntaş A, Jooneghani SGN, Ramalho TC (2020) Deciphering inhibitory activity of flavonoids against tau protein kinases: a coupled molecular docking and quantum chemical study. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2020.1814868
Article
PubMed
Google Scholar
Romero D, Aguilar C, Losick R, Kolter R (2010) Amyloid fibers provide structural integrity to Bacillus subtilis biofilms. PNAS 107(5):2230–2234
Article
CAS
PubMed
PubMed Central
Google Scholar
Ryu J-H, Beuchat LR (2005) Biofilm formation and sporulation by Bacillus cereus on a stainless steel surface and subsequent resistance of vegetative cells and spores to chlorine, chlorine dioxide, and a peroxyacetic acid–based sanitizer. J Food Prot 68(12):2614–2622
Article
CAS
PubMed
Google Scholar
Sadiki M, Balouiri M, Barkai H, Maataoui H, Koraichi SI, Elabed S (2014) Synergistic antibacterial effect of Myrtus communis and Thymus vulgaris essential oils fractional inhibitory concentration index. Int J Pharm Pharm Sci 6:121–124
Google Scholar
Sánchez ME, Turina AdV, Garcıa DA, Nolan MV, Perillo MA (2004) Surface activity of thymol: implications for an eventual pharmacological activity. Colloids Surf B Biointerfaces 34(2):77–86
Article
PubMed
CAS
Google Scholar
Sandasi M, Leonard C, Viljoen A (2008) The effect of five common essential oil components on Listeria monocytogenes biofilms. Food Control 19(11):1070–1075
Article
CAS
Google Scholar
Sandasi M, Leonard C, Viljoen A (2010) The in vitro antibiofilm activity of selected culinary herbs and medicinal plants against Listeria monocytogenes. Lett Appl Microbiol 50(1):30–35
Article
CAS
PubMed
Google Scholar
Sarker SD, Nahar L, Kumarasamy Y (2007) Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 42(4):321–324
Article
CAS
PubMed
PubMed Central
Google Scholar
Semeniuc CA, Pop CR, Rotar AM (2017) Antibacterial activity and interactions of plant essential oil combinations against Gram-positive and Gram-negative bacteria. J Food Drug Anal 25(2):403–408
Article
CAS
PubMed
Google Scholar
Silva F, Ferreira S, Queiroz JA, Domingues FC (2011) Coriander (Coriandrum sativum L.) essential oil: its antibacterial activity and mode of action evaluated by flow cytometry. J Med Microbiol 60(10):1479–1486
Article
CAS
PubMed
Google Scholar
Singh G, Kiran S, Marimuthu P, Isidorov V, Vinogorova V (2008) Antioxidant and antimicrobial activities of essential oil and various oleoresins of Elettaria cardamomum (seeds and pods). J Sci Food Agric 88(2):280–289
Article
CAS
Google Scholar
Song X, Yang Y, Zhao J, Chen Y (2014) Synthesis and antibacterial activity of cinnamaldehyde acylhydrazone with a 1, 4-benzodioxan fragment as a novel class of potent β-ketoacyl-acyl carrier protein synthase III (FabH) inhibitor. Chem Pharm Bull 62(11):1110–1118
Article
CAS
Google Scholar
Sparkman OD (2005) Identification of essential oil components by gas chromatography/quadrupole mass spectroscopy Robert P Adams. J Am Soc Mass Spectrom 16(11):1902–1910
Article
CAS
Google Scholar
Stojković D, Glamočlija J, Ćirić A, Nikolić M, Ristić M, Šiljegović J, Soković M (2013) Investigation on antibacterial synergism of Origanum vulgare and Thymus vulgaris essential oils. Arch Biol Sci 65(2):639–643
Article
Google Scholar
Trombetta D, Castelli F, Sarpietro MG, Venuti V, Cristani M, Daniele C, Saija A, Mazzanti G, Bisignano G (2005) Mechanisms of antibacterial action of three monoterpenes. Antimicrob Agents Chemother 49(6):2474–2486
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Z, Yang Q, Wang X, Li R, Qiao H, Ma P, Sun Q, Zhang H (2020) Antibacterial activity of xanthan-oligosaccharide against Staphylococcus aureus via targeting biofilm and cell membrane. Int J Biol Macromol 153:539–544
Article
CAS
PubMed
Google Scholar
Zarayneh S, Sepahi AA, Jonoobi M, Rasouli H (2018) Comparative antibacterial effects of cellulose nanofiber, chitosan nanofiber, chitosan/cellulose combination and chitosan alone against bacterial contamination of Iranian banknotes. Int J Biol Macromol 118:1045–1054
Article
CAS
PubMed
Google Scholar
Zhang Y, Kong J, Xie Y, Guo Y, Cheng Y, Qian H, Yao W (2018) Essential oil components inhibit biofilm formation in Erwinia carotovora and Pseudomonas fluorescens via anti-quorum sensing activity. LWT 92:133–139
Article
CAS
Google Scholar