Adeniji AA, Loots DT, Babalola OO (2019) Bacillus velezensis: phylogeny, useful applications, and avenues for exploitation. Appl Microbiol Biot 103(9):3669–3682. https://doi.org/10.1007/s00253-019-09710-5
Article
CAS
Google Scholar
Anders S, Pyl PT, Huber W (2015) HTSeq–a Python framework to work with high throughput sequencing data. Bioinformatics 31(2):166–169. https://doi.org/10.1093/bioinformatics/btu638
Article
CAS
Google Scholar
Bai W, Xue Y, Zhou C, Ma Y (2015) Cloning, expression, and characterization of a novel alkali-tolerant xylanase from alkaliphilic Bacillus. sp SN5. Biotechnol Appl Bioc 62(2):208–217. https://doi.org/10.1002/bab.1265
Article
CAS
Google Scholar
Bandounas L, Wierckx NJ, de Winde JH, Ruijssenaars HJ (2011) Isolation and characterization of novel bacterial strains exhibiting ligninolytic potential. BMC Biotechnol 11:94. https://doi.org/10.1186/1472-6750-11-94
Article
CAS
Google Scholar
Barker IJ, Petersen L, Reilly PJ (2010) Mechanism of xylobiose hydrolysis by GH43 β-xylosidase. J Phys Chem B 114(46):15389–15393. https://doi.org/10.1021/jp107886e
Article
CAS
Google Scholar
Bezzate S, Steinmetz M, Aymerich S (1994) Cloning, sequencing, and disruption of a levanase gene of Bacillus polymyxa CF43. J Bacteriol 176(8):2177–2183. https://doi.org/10.1128/jb.176.8.2177-2183.1994
Article
CAS
Google Scholar
Biely P (2012) Microbial carbohydrate esterases deacetylating plant polysaccharides. Biotechnol Adv 30(6):1575–1588. https://doi.org/10.1016/j.biotechadv.2012.04.010
Article
CAS
Google Scholar
Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622. https://doi.org/10.1373/clinchem.2008.112797
Article
CAS
Google Scholar
Chen L, Gu W, Xu HY, Yang GL, Shan XF, Chen G, Wang CF, Qian AD (2018) Complete genome sequence of Bacillus velezensis 157 isolated from Eucommia ulmoides with pathogenic bacteria inhibiting and lignocellulolytic enzymes production by SSF. 3 Biotech 8(2):114. https://doi.org/10.1007/s13205-018-1125-2
Article
Google Scholar
Chen L, Zhao Z, Yu W, Zheng L, Li L, Gu W, Xu H, Wei B, Yan X (2021) Nutritional quality improvement of soybean meal by Bacillus velezensis and Lactobacillus plantarum during two-stage solid- state fermentation. AMB Express 11(1):23. https://doi.org/10.1186/s13568-021-01184-x
Article
CAS
Google Scholar
Chen L, Chen W, Zheng B, Yu W, Zheng L, Qu Z, Yan X, Wei B, Zhao Z (2022) Fermentation of NaHCO3-treated corn germ meal by Bacillus velezensis CL-4 promotes lignocellulose degradation and nutrient utilization. Appl Microbiol Biot 106(18):6077–6094. https://doi.org/10.1007/s00253-022-12130-7
Article
CAS
Google Scholar
Chowdhury SP, Hartmann A, Gao X, Borriss R (2015) Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42-a review. Front Microbiol 6:780. https://doi.org/10.3389/fmicb.2015.00780
Article
Google Scholar
Coutinho PM, Deleury E, Davies GJ, Henrissat B (2003) An evolving hierarchical family classification for glycosyltransferases. J Mol Biol 328(2):307–317. https://doi.org/10.1016/s0022-2836(03)00307-3
Article
CAS
Google Scholar
Crouch LI, Labourel A, Walton PH, Davies GJ, Gilbert HJ (2016) The contribution of non-catalytic carbohydrate binding modules to the activity of lytic polysaccharide monooxygenases. J Biol Chem 291(14):7439–7449. https://doi.org/10.1074/jbc.M115.702365
Article
CAS
Google Scholar
Emms DM, Kelly S (2019) OrthoFinder:phylogenetic orthology inference for comparative genomics. Genome Biol 20(1):238. https://doi.org/10.1186/s13059-019-1832-y
Article
Google Scholar
Forsberg Z, Røhr AK, Mekasha S, Andersson KK, Eijsink VG, Vaaje-Kolstad G, Sørlie M (2014) Comparative study of two chitin-active and two cellulose-active AA10-type lytic polysaccharide monooxygenases. Biochemistry 53(10):1647–1656. https://doi.org/10.1021/bi5000433
Article
CAS
Google Scholar
Graebin NG, Schöffer Jda N, Andrades D, Hertz PF, Ayub MA, Rodrigues RC (2016) Immobilization of glycoside hydrolase families GH1, GH13, and GH70: State of the art and perspectives. Molecules. https://doi.org/10.3390/molecules21081074
Article
Google Scholar
Guo H, Wang XD, Lee DJ (2018) Proteomic researches for lignocellulose-degrading enzymes: A mini-review. Bioresource Technol 265:532–541. https://doi.org/10.1016/j.biortech.2018.05.101
Article
CAS
Google Scholar
He T, Zheng Y, Piao X, Long S (2022) Determination of the available energy, standardized ileal digestibility of amino acids of fermented corn germ meal replacing soybean meal in growing pig diets. Anim Nutr 9:259–268. https://doi.org/10.1016/j.aninu.2021.11.007
Article
CAS
Google Scholar
Huang XF, Santhanam N, Badri DV, Hunter WJ, Manter DK, Decker SR, Vivanco JM, Reardon KF (2013) Isolation and characterization of lignin-degrading bacteria from rainforest soils. Biotechnol Bioeng 110(6):1616–1626. https://doi.org/10.1002/bit.24833
Article
CAS
Google Scholar
Igarashi K, Koivula A, Wada M, Kimura S, Penttilä M, Samejima M (2009) High speed atomic force microscopy visualizes processive movement of Trichoderma reesei cellobiohydrolase I on crystalline cellulose. J Biol Chem 284(52):36186–36190. https://doi.org/10.1074/jbc.M109.034611
Article
CAS
Google Scholar
Jamaldheen SB, Thakur A, Moholkar VS, Goyal A (2019) Enzymatic hydrolysis of hemicellulose from pretreated Finger millet (Eleusine coracana) straw by recombinant endo-1,4-β-xylanase and exo-1,4-β-xylosidase. Int J Biol Macromol 135:1098–1106. https://doi.org/10.1016/j.ijbiomac.2019.06.010
Article
CAS
Google Scholar
Janeček Š, Svensson B, MacGregor EA (2014) α-Amylase: an enzyme specificity found in various families of glycoside hydrolases. Cell Mol Life Sci 71(7):1149–1170. https://doi.org/10.1007/s00018-013-1388-z
Article
CAS
Google Scholar
Jaworski NW, Lærke HN, Bach Knudsen KE, Stein HH (2015) Carbohydrate composition and in vitro digestibility of dry matter and nonstarch polysaccharides in corn, sorghum, and wheat and coproducts from these grains. J Anim Sci 93(3):1103–1113. https://doi.org/10.2527/jas.2014-8147
Article
CAS
Google Scholar
Kechin A, Boyarskikh U, Kel A, Filipenko M (2017) cutPrimers: a new tool for accurate cutting of primers from reads of targeted next generation sequencing. J Comput Biol 24(11):1138–1143. https://doi.org/10.1089/cmb.2017.0096
Article
CAS
Google Scholar
Khalid F, Khalid A, Fu Y, Hu Q, Zheng Y, Khan S, Wang Z (2021) Potential of Bacillus velezensis as a probiotic in animal feed: a review. J Microbiol 59(7):627–633. https://doi.org/10.1007/s12275-021-1161-1
Article
Google Scholar
Kim SY, Song H, Sang MK, Weon HY, Song J (2017) The complete genome sequence of Bacillus velezensis strain GH1-13 reveals agriculturally beneficial properties and a unique plasmid. J Biotechnol 259:221–227. https://doi.org/10.1016/j.jbiotec.2017.06.1206
Article
CAS
Google Scholar
Klutts JS, Yoneda A, Reilly MC, Bose I, Doering TL (2006) Glycosyltransferases and their products: cryptococcal variations on fungal themes. Fems Yeast Res 6(4):499–512. https://doi.org/10.1111/j.1567-1364.2006.00054.x
Article
CAS
Google Scholar
Krogh A, Brown M, Mian IS, Sjölander K, Haussler D (1994) Hidden Markov models in computational biology Applications to protein modeling. J Mol Biol 235(5):1501–1531. https://doi.org/10.1006/jmbi.1994.1104
Article
CAS
Google Scholar
Lagaert S, Pollet A, Courtin CM, Volckaert G (2014) β-xylosidases and α-L-arabinofuranosidases: accessory enzymes for arabinoxylan degradation. Biotechnol Adv 32(2):316–332. https://doi.org/10.1016/j.biotechadv.2013.11.005
Article
CAS
Google Scholar
Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359. https://doi.org/10.1038/nmeth.1923
Article
CAS
Google Scholar
Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B (2013) Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels 6(1):41. https://doi.org/10.1186/1754-6834-6-41
Article
CAS
Google Scholar
Li Y, Lei L, Zheng L, Xiao X, Tang H, Luo C (2020) Genome sequencing of gut symbiotic Bacillus velezensis LC1 for bioethanol production from bamboo shoots. Biotechnol Biofuels 13:34. https://doi.org/10.1186/s13068-020-1671-9
Article
CAS
Google Scholar
Liu G, Kong Y, Fan Y, Geng C, Peng D, Sun M (2017) Whole-genome sequencing of Bacillus velezensis LS69, a strain with a broad inhibitory spectrum against pathogenic bacteria. J Biotechnol 249:20–24. https://doi.org/10.1016/j.jbiotec.2017.03.018
Article
CAS
Google Scholar
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−ΔΔC(T)) Method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262
Article
CAS
Google Scholar
Malgas S, van Dyk JS, Pletschke BI (2015) A review of the enzymatic hydrolysis of mannans and synergistic interactions between β-mannanase, β-mannosidase and α-galactosidase. World J Microb Biot 31(8):1167–1175. https://doi.org/10.1007/s11274-015-1878-2
Article
CAS
Google Scholar
Miao Y, Liu D, Li G, Li P, Xu Y, Shen Q, Zhang R (2015) Genome-wide transcriptomic analysis of a superior biomass-degrading strain of A. fumigatus revealed active lignocellulose-degrading genes. BMC Genomics 16(1):459. https://doi.org/10.1186/s12864-015-1658-2
Article
CAS
Google Scholar
Midorikawa GEO, Correa CL, Noronha EF, Filho EXF, Togawa RC, Costa M, Silva-Junior OB, Grynberg P, Miller RNG (2018) Analysis of the transcriptome in Aspergillus tamarii during enzymatic degradation of sugarcane bagasse. Front Bioeng Biotech 6:123. https://doi.org/10.3389/fbioe.2018.00123
Article
Google Scholar
Monica P, Kapoor M (2021) Alkali-stable GH11 endo-β-1,4 xylanase (xynB) from Bacillus subtilis strain CAM 21: application in hydrolysis of agro-industrial wastes, fruit/vegetable peels and weeds. Prep Biochem Biotech 51(5):475–487. https://doi.org/10.1080/10826068.2020.1830416
Article
CAS
Google Scholar
Olukomaiya O, Fernando C, Mereddy R, Li X, Sultanbawa Y (2019) Solid-state fermented plant protein sources in the diets of broiler chickens: A review. Anim Nutr 5(4):319–330. https://doi.org/10.1016/j.aninu.2019.05.005
Article
Google Scholar
See-Too WS, Chua KO, Lim YL, Chen JW, Convey P, Mohd Mohidin TB, Yin WF, Chan KG (2017) Complete genome sequence of Planococcus donghaensis JH1(T), a pectin-degrading bacterium. J Biotechnol 252:11–14. https://doi.org/10.1016/j.jbiotec.2017.05.005
Article
CAS
Google Scholar
Shi M, Liu Z, Wang H, Shi C, Liu L, Wang J, Li D, Zhang S (2019) Determination and prediction of the digestible and metabolizable energy contents of corn germ meal in growing pigs. Asian Austral J Anim 32(3):405–412. https://doi.org/10.5713/ajas.17.0891
Article
CAS
Google Scholar
Shu X, Wang Y, Zhou Q, Li M, Hu H, Ma Y, Chen X, Ni J, Zhao W, Huang S, Wu L (2018) Biological degradation of Aflatoxin B1 by cell-free extracts of Bacillus velezensis DY3108 with broad pH stability and excellent Thermostability. Toxins. https://doi.org/10.3390/toxins10080330
Article
Google Scholar
Sunna A, Antranikian G (1997) Xylanolytic enzymes from fungi and bacteria. Crit Rev Biotechnol 17(1):39–67. https://doi.org/10.3109/07388559709146606
Article
CAS
Google Scholar
Tang H, Zheng L, Li Y, Lei L, Yang X, Luo C (2021) Comparative genomic and secretomic characterisation of endophytic Bacillus velezensis LC1 producing bioethanol from bamboo lignocellulose. Arch Microbiol 203(6):3089–3099. https://doi.org/10.1007/s00203-021-02306-6
Article
CAS
Google Scholar
Teng D, Wang JH, Fan Y, Yang YL, Tian ZG, Luo J, Yang GP, Zhang F (2006) Cloning of beta-1,3–1,4-glucanase gene from Bacillus licheniformis EGW039 (CGMCC 0635) and its expression in Escherichia coli BL21 (DE3). Appl Microbiol Biot 72(4):705–712. https://doi.org/10.1007/s00253-006-0329-2
Article
CAS
Google Scholar
Thompson J, Gentry-Weeks CR, Nguyen NY, Folk JE, Robrish SA (1995) Purification from Fusobacterium mortiferum ATCC 25557 of a 6-phosphoryl-O-alpha-D-glucopyranosyl:6-phosphoglucohydrolase that hydrolyzes maltose 6-phosphate and related phospho-alpha-D-glucosides. J Bacteriol 177(9):2505–2512. https://doi.org/10.1128/jb.177.9.2505-2512.1995
Article
CAS
Google Scholar
Wang R, Xu D (2019) Molecular dynamics investigations of oligosaccharides recognized by family 16 and 22 carbohydrate binding modules. Phys Chem Chem Phys 21(38):21485–21496. https://doi.org/10.1039/c9cp04673a
Article
CAS
Google Scholar
Wang B, Guo G, Wang C, Lin Y, Wang X, Zhao M, Guo Y, He M, Zhang Y, Pan L (2010a) Survey of the transcriptome of Aspergillus oryzae via massively parallel mRNA sequencing. Nucleic Acids Res 38(15):5075–5087. https://doi.org/10.1093/nar/gkq256
Article
CAS
Google Scholar
Wang L, Feng Z, Wang X, Wang X, Zhang X (2010b) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26(1):136–138. https://doi.org/10.1093/bioinformatics/btp612
Article
CAS
Google Scholar
Wang M, Huang S, Chen J, Chen S, Long M (2021) Complete genome sequence of zearalenone degrading bacteria Bacillus velezensis A2. Curr Microbiol 78(1):347–350. https://doi.org/10.1007/s00284-020-02234-6
Article
CAS
Google Scholar
Wang SY, Herrera-Balandrano DD, Wang YX, Shi XC, Chen X, Jin Y, Liu FQ, Laborda P (2022) Biocontrol ability of the Bacillus. amyloliquefaciens group, B. amyloliquefaciens, B. velezensis, B. nakamurai, and B. siamensis, for the management of fungal postharvest diseases: a review. J Agric Food Chem 70(22):6591–6616. https://doi.org/10.1021/acs.jafc.2c01745
Article
CAS
Google Scholar
Wu X, Shi Z, Tian W, Liu M, Huang S, Liu X, Yin H, Wang L (2022) A thermostable and CBM2-linked GH10 xylanase from Thermobifida fusca for paper bleaching. Front Bioeng Biotech 10:939550. https://doi.org/10.3389/fbioe.2022.939550
Article
Google Scholar
Xu C, Su X, Wang J, Zhang F, Shen G, Yuan Y, Yan L, Tang H, Song F, Wang W (2021) Characteristics and functional bacteria in a microbial consortium for rice straw lignin-degrading. Bioresource Technol 331:125066. https://doi.org/10.1016/j.biortech.2021.125066
Article
CAS
Google Scholar
Zhang J, Siika-Aho M, Tenkanen M, Viikari L (2011) The role of acetyl xylan esterase in the solubilization of xylan and enzymatic hydrolysis of wheat straw and giant reed. Biotechnol Biofuels 4(1):60. https://doi.org/10.1186/1754-6834-4-60
Article
CAS
Google Scholar
Zhang W, Li D, Liu L, Zang J, Duan Q, Yang W, Zhang L (2013) The effects of dietary fiber level on nutrient digestibility in growing pigs. J Anim Sci Biotechnol 4(1):17. https://doi.org/10.1186/2049-1891-4-17
Article
CAS
Google Scholar
Zhang DX, Kang YH, Zhan S, Zhao ZL, Jin SN, Chen C, Zhang L, Shen JY, Wang CF, Wang GQ, Shan XF, Qian AD (2019a) Effect of Bacillus velezensis on Aeromonas veronii-induced intestinal mucosal barrier function damage and inflammation in Crucian Carp (Carassius auratus). Front Microbiol 10:2663. https://doi.org/10.3389/fmicb.2019.02663
Article
Google Scholar
Zhang Z, Liu Z, Zhang S, Lai C, Ma D, Huang C (2019b) Effect of inclusion level of corn germ meal on the digestible and metabolizable energy and evaluation of ileal AA digestibility of corn germ meal fed to growing pigs. J Anim Sci 97(2):768–778. https://doi.org/10.1093/jas/sky469
Article
Google Scholar