Bach A, Guasch I, Elcoso G, Chaucheyras Durand F, Castex M, Fabregas F, Garcia Fruitos E, Aris A (2018) Changes in gene expression in the rumen and colon epithelia during the dry period through lactation of dairy cows and effects of live yeast supplementation. J Dairy Sci 101:2631–2640. https://doi.org/10.3168/jds.2017-13212
Article
CAS
PubMed
Google Scholar
Bouchard DS, Seridan B, Saraoui T, Rault L, Germon P, Gonzalez Moreno C, Nader Macias FM, Baud D, Francois P, Chuat V, Chain F, Langella P, Nicoli J, Le Loir Y, Even S (2015) Lactic acid bacteria isolated from bovine mammary microbiota: potential allies against bovine mastitis. PLoS ONE 10:e0144831. https://doi.org/10.1371/journal.pone.0144831
Article
CAS
PubMed
PubMed Central
Google Scholar
Catozzi C, Cuscó A, Lecchi C, De Carlo E, Vecchio D, Martucciello A, D’Angelo L, Francino O, Sanchez Bonastre A, Ceciliani F (2019) Impact of intramammary inoculation of inactivated Lactobacillus rhamnosus and antibiotics on the milk microbiota of water buffalo with subclinical mastitis. PLoS ONE 14:e0210204. https://doi.org/10.1371/journal.pone.0210204
Article
CAS
PubMed
PubMed Central
Google Scholar
Chagunda MG, Larsen T, Bjerring M, Ingvartsen KL (2006) l-lactate dehydrogenase and N-acetyl-β-d-glucosaminidase activities in bovine milk as indicators of non-specific mastitis. J Dairy Res 73:431–440. https://doi.org/10.1017/s0022029906001956
Article
CAS
PubMed
Google Scholar
Coffey TJ, Pullinger GD, Urwin R, Jolley KA, Wilson SM, Maiden MC, Leigh JA (2006) First insights into the evolution of Streptococcus uberis: a multilocus sequence typing scheme that enables investigation of its population biology. Appl Environ Microbiol 72:1420–1428. https://doi.org/10.1128/aem.72.2.1420-1428.2006
Article
CAS
PubMed
PubMed Central
Google Scholar
Condas LAZ, De Buck J, Nobrega DB, Carson DA, Roy JP, Keefe GP, DeVries TJ, Middleton JR, Dufour S, Barkema HW (2017) Distribution of non-aureus staphylococci species in udder quarters with low and high somatic cell count, and clinical mastitis. J Dairy Sci 100:5613–5627. https://doi.org/10.3168/jds.2016-12479
Article
CAS
PubMed
Google Scholar
Cross ML (2002) Microbes versus microbes: immune signals generated by probiotic lactobacilli and their role in protection against microbial pathogens. FEMS Immunol Med Microbiol 34:245–253. https://doi.org/10.1111/j.1574-695x.2002.tb00632.x
Article
CAS
PubMed
Google Scholar
D’Amico de Alcantara AL, Bruzaroski SR, Luiz LL, Batista de Souza CH, Poli-Frederico RC, Fragnani R, Walter de Santana EH (2019) Antimicrobial activity of Lactobacillus rhamnosus against Pseudomonas fluorescens and Pseudomonas putida from raw milk. J Food Process Preserv. https://doi.org/10.1111/jfpp.14082
Article
Google Scholar
Decimo M, Morandi S, Silvetti T, Brasca M (2014) Characterization of gram-negative psychrotrophic bacteria isolated from Italian bulk tank milk. J Food Sci 79:M2081–2090. https://doi.org/10.1111/1750-3841.12645
Article
CAS
PubMed
Google Scholar
Deng Q, Odhiambo JF, Farooq U, Lam T, Dunn SM, Ametaj BN (2015) Intravaginal lactic acid bacteria modulated local and systemic immune responses and lowered the incidence of uterine infections in periparturient dairy cows. PLoS ONE 10:1–16. https://doi.org/10.1371/journal.pone.0124167
Article
CAS
Google Scholar
Derakhshani H, Plaizier JC, De Buck J, Barkema HW, Khafipour E (2018) Association of bovine major histocompatibility complex (BoLA) gene polymorphism with colostrum and milk microbiota of dairy cows during the first week of lactation. Microbiome 6:203–221. https://doi.org/10.1186/s40168-018-0586-1
Article
PubMed
PubMed Central
Google Scholar
Espeche MC, Otero MC, Sesma F, Nader Macias ME (2009) Screening of surface properties and antagonistic substances production by lactic acid bacteria isolated from the mammary gland of healthy and mastitis cows. Vet Microbiol 135:346–357. https://doi.org/10.1016/j.vetmic.2008.09.078
Article
CAS
PubMed
Google Scholar
FAO, WHO (2008) Health and nutritional properties of probiotics in food, including powder milk with live lactic acid bacteria. http://www.who.int. Accessed 22 Nov 2009
Frola ID, Pellegrino MS, Espeche MC, Giraudo JA, Nader Macias ME, Bogni CI (2012) Effects of intramammary inoculation of Lactobacillus perolens CRL1724 in lactating cows’ udders. J Dairy Sci 79:84–92. https://doi.org/10.1017/S0022029911000835
Article
CAS
Google Scholar
Gao X, Fan C, Zhang Z, Li S, Xu C, Zhao Y, Han L, Zhang D, Liu M (2019) Enterococcal isolates from bovine subclinical and clinical mastitis: antimicrobial resistance and integron-gene cassette distribution. Microb Pathog 129:82–87. https://doi.org/10.1016/j.micpath.2019.01.031
Article
CAS
PubMed
Google Scholar
Geng CY, Ji S, Jin YH, Li CY, Xia GJ, Li YM, Zhang M (2018) Comparison of blood immunity, antioxidant capacity and hormone indexes in finishing bulls fed active dry yeast (Saccharomyces cerevisiae) and yeast culture. Int J Agric Biol 20:2561–2568. https://doi.org/10.17957/IJAB/15.0822
Article
Google Scholar
Genis S, Bach A, Fabregas F, Aris A (2016) Potential of lactic acid bacteria at regulating Escherichia coli infection and inflammation of bovine endometrium. Theriogenology 85:625–637. https://doi.org/10.1016/j.theriogenology.2015.09.05
Article
PubMed
Google Scholar
Genis S, Sánchez Chardi A, Bach À, Fabregas F, Aris A (2017) A combination of lactic acid bacteria regulates Escherichia coli infection and inflammation of the bovine endometrium. J Dairy Sci 100:479–492. https://doi.org/10.3168/jds.2016-11671
Article
CAS
PubMed
Google Scholar
Guha A, Gera S, Sharma A (2012) Evaluation of milk trace elements, lactate dehydrogenase, alkaline phosphatase and aspartate aminotransferase activity of subclinical mastitis as indicator of subclinical mastitis in riverine buffalo (Bubalus bubalis). Asian-Australas J Anim Sci 25:353–360. https://doi.org/10.5713/ajas.2011.11426
Article
CAS
PubMed
PubMed Central
Google Scholar
Hagi T, Sasaki K, Aso H, Nomura M (2013) Adhesive properties of predominant bacteria in raw cow’s milk to bovine mammary gland epithelial cells. Folia Microbiol 58:515–522. https://doi.org/10.1007/s12223-013-0240-z
Article
CAS
Google Scholar
Kan X, Liu B, Guo W, Wei L, Lin Y, Guo Y, Gong Q, Li Y, Xu D, Cao Y, Huang B, Dong A, Ma H, Fu S, Liu J (2019) Myricetin relieves LPS-induced mastitis by inhibiting inflammatory response and repairing the blood–milk barrier. J Cell Physiol 234:1–11. https://doi.org/10.1002/jcp.28288
Article
CAS
Google Scholar
Lafarge V, Ogier JC, Girard V, Maladen V, Leveau JY, Gruss A, Delacroix Buchet A (2004) Raw cow milk bacterial population shifts attributable to refrigeration. Appl Environ Microbiol 70:5644–5650. https://doi.org/10.1128/AEM.70(9):5644-5650.2004
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma ZZ, Cheng YY, Wang SQ, Ge JZ, Shi HP, Kou JC (2019) Positive effects of dietary supplementation of three probiotics on milk yield, milk composition and intestinal flora in Sannan dairy goats varied in kind of probiotics. J Anim Physiol Anim Nutr 00:1–12. https://doi.org/10.1111/jpn.13226
Article
CAS
Google Scholar
Maldonado NC, Chiaraviglio J, Bru E, De Chazal V, Santos V, Nader-Macias MEF (2017) Effect of milk fermented with lactic acid bacteria on diarrheal incidence, growth performance and microbiological and blood profiles of newborn dairy calves. Probiotics Antimicrob Proteins 2017:1–9. https://doi.org/10.1007/s12602-017-9308-4
Article
Google Scholar
Mastromarino P, Capobianco D, Miccheli A, Pratico G, Campagna G, Laforgia N, Capursi T, Baldassarre ME (2015) Administration of a multi-strain probiotic product (VSL#3) to women in the perinatal period differentially affects breast milk beneficial microbiota in relation to mode of delivery. Pharmacol Res 95–96:63–70. https://doi.org/10.1016/j.phrs.2015.03.013
Article
CAS
PubMed
Google Scholar
Murphy JM (1947) The genesis of bovine udder infection and mastitis; the occurrence of streptococcal infection in a cow population during a seven-year period and its relationship to age. Am J Vet Res 8:29–42
CAS
PubMed
Google Scholar
Nasiri AH, Towhidi A, Shakeri M, Zhandi M, Dehghan Banadaky M, Pooyan HR, Sehati F, Rostami F, Karamzadeh A, Khani M, Ahmadi F (2019) Effects of Saccharomyces cerevisiae supplementation on milk production, insulin sensitivity and immune response in transition dairy cows during hot season. Anim Feed Sci Technol 251:112–123. https://doi.org/10.1016/j.anifeedsci.2019.03.007
Article
CAS
Google Scholar
Oikonomou G, Bicalho ML, Meira E, Rossi RE, Foditsch C, Machado VS, Teixeira AG, Santisteban C, Schukken YH, Bicalho RC (2014) Microbiota of cow’s milk; distinguishing healthy, sub-clinically and clinically diseased quarters. PLoS ONE 9:e85904. https://doi.org/10.1371/journal.pone.0085904
Article
CAS
PubMed
PubMed Central
Google Scholar
Olagaray KE, Sivinski SE, Saylor BA, Mamedova LK, Sauls-Hiesterman JA, Yoon I, Bradford BJ (2019) Effect of Saccharomyces cerevisiae fermentation product on feed intake parameters, lactation performance, and metabolism of transition dairy cattle. J Dairy Sci 102:8092–8107. https://doi.org/10.3168/jds.2019-16315
Article
CAS
PubMed
Google Scholar
Patel RJ, Pandit RJ, Bhatt VD, Kunjadia PD, Nauriyal DS, Koringa PG, Joshi CG, Kunjadia AP (2016) Metagenomic approach to study the bacterial community in clinical and subclinical mastitis in buffalo. Meta Gene 12:4–12. https://doi.org/10.1016/j.mgene.2016.12.014
Article
Google Scholar
Patel R, Kunjadia P, Koringa P, Joshi C, Kunjadiya A (2019) Microbiological profiles in clinical and subclinical cases of mastitis in milking Jafarabadi buffalo. Res Vet Sci 125:94–99. https://doi.org/10.1016/j.rvsc.2019.05.012
Article
PubMed
Google Scholar
Pellegrino M, Berardo N, Giraudo J, Nader Macias MEF, Bogni C (2017) Bovine mastitis prevention: humoral and cellular response of dairy cows inoculated with lactic acid bacteria at the dry-off period. Benef Microbes 8:589–596. https://doi.org/10.3920/bm2016.0194
Article
CAS
PubMed
Google Scholar
Prabhurajeshwar C, Chandrakanth RK (2017) Probiotic potential of Lactobacilli with antagonistic activity against pathogenic strains: an in vitro validation for the production of inhibitory substances. Biomed J 40:270–283. https://doi.org/10.1016/j.bj.2017.06.008
Article
PubMed
PubMed Central
Google Scholar
Rozanska H, Lewtak Pilat A, Kubajka M, Weiner M (2019) Occurrence of enterococci in mastitic cow’s milk and their antimicrobial resistance. J Vet Res 63:93–97. https://doi.org/10.2478/jvetres-2019-0014
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruegg PL (2017) A 100-year review: mastitis detection, management, and prevention. J Dairy Sci 100:10381–10397. https://doi.org/10.3168/jds.2017-13023
Article
CAS
PubMed
Google Scholar
Schmidt VS, Kaufmann V, Kulozik U, Scherer S, Wenning M (2012) Microbial biodiversity, quality and shelf life of microfiltered and pasteurized extended shelf life (ESL) milk from Germany, Austria and Switzerland. Int J Food Microbiol 154:1–9. https://doi.org/10.1016/j.ijfoodmicro.2011.12.002
Article
PubMed
Google Scholar
Terre M, Maynou G, Bach A, Gauthier M (2015) Effect of Saccharomyces cerevisiae CNCM I-1077 supplementation on performance and rumen microbiota of dairy calves. Prof Anim Sci 31:153–158. https://doi.org/10.15232/pas.2014-01384
Article
Google Scholar
Todorov SD, Dicks MT (2005) Growth parameters influencing the production of Lactobacillus rhamnosus bacteriocins ST461BZ and ST462BZ. Ann Microbiol 55:283–289
CAS
Google Scholar
Wall SK, Wellnitz O, Hernández Castellano LE, Ahmadpour A, Bruckmaier RM (2016) Supraphysiological oxytocin increases the transfer of immunoglobulins and other blood components to milk during lipopolysaccharide-and lipoteichoic acid-induced mastitis in dairy cows. J Dairy Sci 99:9165–9173. https://doi.org/10.3168/jds.2016-11548
Article
CAS
PubMed
Google Scholar
Walsh MC, Gardiner GE, Hart OM, Lawlor PG, Daly M, Lynch B, Richert BT, Radcliffe S, Giblin L, Hill C, Fitzgerald GF, Stanton C, Ross P (2010) Predominance of a bacteriocin-producing Lactobacillus salivarius component of a five-strain probiotic in the porcine ileum and effects on host immune phenotype. FEMS Microbiol Ecol 64:317–327. https://doi.org/10.1111/j.1574-6941.2008.00454.x
Article
CAS
Google Scholar
Wellnitz O, Bruckmaier RM (2012) The innate immune response of the bovine mammary gland to bacterial infection. Vet J 192:148–152. https://doi.org/10.1016/j.tvjl.2011.09.013
Article
CAS
PubMed
Google Scholar
Yuan K, Mendonca LG, Hulbert LE, Mamedova LK, Muckey MB, Shen Y, Elrod CC, Bradford BJ (2015) Yeast product supplementation modulated humoral and mucosal immunity and uterine inflammatory signals in transition dairy cows. J Dairy Sci 98:3236–3246. https://doi.org/10.3168/jds.2014-8469
Article
CAS
PubMed
Google Scholar
Zanello G, Berri M, Dupont J, Sizaret PV, Dlnca R, Salmon H, Meurens F (2011) Saccharomyces cerevisiae modulates immune gene expressions and inhibits ETEC-mediated ERK1/2 and p38 signaling pathways in intestinal epithelial cells. PLoS ONE 6:e18573. https://doi.org/10.1371/journal.pone.0018573
Article
CAS
PubMed
PubMed Central
Google Scholar