Ahmad ZA, Yeap SK, Ali AM, Ho WY, Alitheen NBM, Hamid M (2012) scFv antibody: principles and clinical application. Clin Dev Immunol 2012:980250. doi:10.1155/2012/980250
Article
PubMed
PubMed Central
Google Scholar
Alderson RF, Kreitman RJ, Chen T, Yeung P, Herbst R, Fox JA, Pastan I (2009) CAT-8015: a second-generation Pseudomonas exotoxin A–based immunotherapy targeting CD22-expressing hematologic malignancies. Clin Cancer Res 15(3):832–839. doi:10.1158/1078-0432.CCR-08-1456
Article
CAS
PubMed
PubMed Central
Google Scholar
Becker N, Benhar I (2012) Antibody-based immunotoxins for the treatment of cancer. Antibodies 1(1):39–69. doi:10.3390/antib1010039
Article
CAS
Google Scholar
Bullenkamp J, Tavassoli M (2014) Signalling of apoptin anticancer genes. Springer, London, pp 11–37
Google Scholar
Bullenkamp J, Gäken J, Festy F, Chong EZ, Ng T, Tavassoli M (2015) Apoptin interacts with and regulates the activity of protein kinase C beta in cancer cells. Apoptosis 20(6):831–842. doi:10.1007/s10495-015-1120-6
Article
CAS
PubMed
Google Scholar
Burek M, Maddika S, Burek C, Daniel P, Schulze-Osthoff K, Los M (2006) Apoptin-induced cell death is modulated by Bcl-2 family members and is Apaf-1 dependent. Oncogene 25(15):2213–2222. doi:10.1038/sj.onc.1209258
Article
CAS
PubMed
PubMed Central
Google Scholar
Carnahan J, Wang P, Kendall R, Chen C, Hu S, Boone T, Juan T, Talvenheimo J, Montestruque S, Sun J (2003) Epratuzumab, a humanized monoclonal antibody targeting CD22. Clin Cancer Res 9(10):3982s–3990s
CAS
PubMed
Google Scholar
Cesano A, Gayko U (2003) CD22 as a target of passive immunotherapy. Semin Oncol 30(2):253–257. doi:10.1053/sonc.2003.50057
Article
CAS
PubMed
Google Scholar
Coiffier B, Lepage E, Brière J, Herbrecht R, Tilly H, Bouabdallah R, Morel P, Van Den Neste E, Salles G, Gaulard P (2002) CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med 346(4):235–242. doi:10.1056/NEJMoa011795
Article
CAS
PubMed
Google Scholar
Danen-Van Oorschot A, Fischer D, Grimbergen JE, Klein B, Zhuang S-M, Falkenburg J, Backendorf C, Quax P, Van der Eb A, Noteborn M (1997) Apoptin induces apoptosis in human transformed and malignant cells but not in normal cells. Proc Natl Acad Sci 94(11):5843–5847
Article
CAS
PubMed
Google Scholar
Danen-van Oorschot AA, Zhang Y-H, Leliveld SR, Rohn JL, Seelen MC, Bolk MW, van Zon A, Erkeland SJ, Abrahams J-P, Mumberg D (2003) Importance of nuclear localization of apoptin for tumor-specific induction of apoptosis. J Biol Chem 278(30):27729–27736. doi:10.1074/jbc.M303114200
Article
CAS
PubMed
Google Scholar
Diamantis N, Banerji U (2016) Antibody-drug conjugates—an emerging class of cancer treatment. Br J Cancer 114(4):362–367. doi:10.1038/bjc.2015.435
Article
CAS
PubMed
PubMed Central
Google Scholar
DiJoseph JF, Armellino DC, Boghaert ER, Khandke K, Dougher MM, Sridharan L, Kunz A, Hamann PR, Gorovits B, Udata C (2004) Antibody-targeted chemotherapy with CMC-544: a CD22-targeted immunoconjugate of calicheamicin for the treatment of B-lymphoid malignancies. Blood 103(5):1807–1814. doi:10.1182/blood-2003-07-2466
Article
CAS
PubMed
Google Scholar
DiJoseph JF, Popplewell A, Tickle S, Ladyman H, Lawson A, Kunz A, Khandke K, Armellino DC, Boghaert ER, Hamann PR (2005) Antibody-targeted chemotherapy of B-cell lymphoma using calicheamicin conjugated to murine or humanized antibody against CD22. Cancer Immunol Immunother 54(1):11–24. doi:10.1007/s00262-004-0572-2
Article
CAS
PubMed
Google Scholar
Firer MA, Gellerman G (2012) Targeted drug delivery for cancer therapy: the other side of antibodies. J Hematol Oncol 5(1):70. doi:10.1186/1756-8722-5-70
Article
CAS
PubMed
PubMed Central
Google Scholar
FitzGerald DJ, Wayne AS, Kreitman RJ, Pastan I (2011) Treatment of hematologic malignancies with immunotoxins and antibody-drug conjugates. Cancer Res 71(20):6300–6309. doi:10.1158/0008-5472.CAN-11-1374
Article
CAS
PubMed
PubMed Central
Google Scholar
Fulda S, Oster W, Berthold F (1997) Effects of WR-2721 (amifostine) and its metabolite WR-1065 on the antiproliferative activity of chemotherapeutic agents on neuroblastoma cells in vitro. Anticancer Drugs 8(1):34–41
Article
CAS
PubMed
Google Scholar
Furman RR, Coleman M, Leonard JP (2004) Epratuzumab in non-hodgkin’lymphomas. Curr Treat Options Oncol 5(4):283–288
Article
PubMed
Google Scholar
Grimm S, Noteborn M (2010) Anticancer genes: inducers of tumour-specific cell death signalling. Trends Mol Med 16(2):88–96. doi:10.1016/j.molmed.2009.12.002
Article
CAS
PubMed
Google Scholar
Guan G, Zhao M, Liu L, Jin C, Sun K, Zhang D, Yu D, Cao H, Lu Y, Wen L (2013) Salmonella typhimurium mediated delivery of apoptin in human laryngeal cancer. Int J Med Sci 10(12):1639–1648. doi:10.7150/ijms.6960
Article
CAS
PubMed
PubMed Central
Google Scholar
Guelen L, Paterson H, Gäken J, Meyers M, Farzaneh F, Tavassoli M (2004) TAT-apoptin is efficiently delivered and induces apoptosis in cancer cells. Oncogene 23(5):1153–1165. doi:10.1038/sj.onc.1207224
Article
CAS
PubMed
Google Scholar
Heilman DW, Teodoro JG, Green MR (2006) Apoptin nucleocytoplasmic shuttling is required for cell type-specific localization, apoptosis, and recruitment of the anaphase-promoting complex/cyclosome to PML bodies. J Virol 80(15):7535–7545. doi:10.1128/JVI.02741-05
Article
CAS
PubMed
PubMed Central
Google Scholar
Hennessy BT, Hanrahan EO, Daly PA (2004) Non-Hodgkin lymphoma: an update. Lancet Oncol 5(6):341–353. doi:10.1016/S1470-2045(04)01490-1
Article
PubMed
Google Scholar
Jin J-l, Gong J, Yin T-j, Lu Y-j, Xia J-j, Xie Y-y, Di Y, He L, Guo J-l, Sun J (2011) PTD4-apoptin protein and dacarbazine show a synergistic antitumor effect on B16-F1 melanoma in vitro and in vivo. Eur J Pharmacol 654(1):17–25. doi:10.1016/j.ejphar.2010.12.004
Article
CAS
PubMed
Google Scholar
Keppler-Hafkemeyer A, Kreitman RJ, Pastan I (2000) Apoptosis induced by immunotoxins used in the treatment of hematologic malignancies. Int J Cancer 87(1):86–94
Article
CAS
PubMed
Google Scholar
Krauss J, Arndt MA, Vu BK, Newton DL, Rybak SM (2005) Targeting malignant B-cell lymphoma with a humanized anti-CD22 scFv-angiogenin immunoenzyme. Br J Haematol 128(5):602–609. doi:10.1111/j.1365-2141.2005.05356.x
Article
CAS
PubMed
Google Scholar
Krauss J, Exner E, Mavratzas A, Seeber S, Arndt MA (2009) High-level production of a humanized immunoRNase fusion protein from stably transfected myeloma cells. Methods Mol Biol 525:471–490. doi:10.1007/978-1-59745-554-1_24
Article
CAS
PubMed
Google Scholar
Kreitman RJ, Pastan I (2011) Antibody fusion proteins: anti-CD22 recombinant immunotoxin moxetumomab pasudotox. Clin Cancer Res 17(20):6398–6405. doi:10.1158/1078-0432.CCR-11-0487
Article
CAS
PubMed
PubMed Central
Google Scholar
Kreitman RJ, Pastan I (2015) Immunoconjugates in the management of hairy cell leukemia. Best Pract Res Clin Haematol 28(4):236–245. doi:10.1016/j.beha.2015.09.003
Article
PubMed
PubMed Central
Google Scholar
Kuusisto HV, Wagstaff KM, Alvisi G, Jans DA (2008) The C-terminus of apoptin represents a unique tumor cell-enhanced nuclear targeting module. Int J Cancer 123(12):2965–2969. doi:10.1002/ijc.23884
Article
CAS
PubMed
Google Scholar
Leonard JP, Coleman M, Ketas JC, Chadburn A, Furman R, Schuster MW, Feldman EJ, Ashe M, Schuster SJ, Wegener WA (2004) Epratuzumab, a humanized anti-CD22 antibody, in aggressive non-Hodgkin’s lymphoma. Clin Cancer Res 10(16):5327–5334. doi:10.1158/1078-0432.CCR-04-0294
Article
CAS
PubMed
Google Scholar
Lian H, Jin N, Li X, Mi Z, Zhang J, Sun L, Li X, Zheng H, Li P (2007) Induction of an effective anti-tumor immune response and tumor regression by combined administration of IL-18 and apoptin. Cancer Immunol Immunother 56(2):181–192. doi:10.1007/s00262-006-0178-y
Article
CAS
PubMed
Google Scholar
Litvak-Greenfeld D, Benhar I (2012) Risks and untoward toxicities of antibody-based immunoconjugates. Adv Drug Deliv Rev 64(15):1782–1799. doi:10.1016/j.addr.2012.05.013
Article
CAS
PubMed
Google Scholar
Los M, Panigrahi S, Rashedi I, Mandal S, Stetefeld J, Essmann F, Schulze-Osthoff K (2009) Apoptin, a tumor-selective killer. BBA-Mol Cell Res 1793(8):1335–1342. doi:10.1016/j.bbamcr.2009.04.002
CAS
Google Scholar
Ma J-L, Han S-X, Zhao J, Zhang D, Wang L, Li Y-D, Zhu Q (2012) Systemic delivery of lentivirus-mediated secretable TAT-apoptin eradicates hepatocellular carcinoma xenografts in nude mice. Int J Oncol 41(3):1013–1020. doi:10.3892/ijo.2012.1547
CAS
PubMed
Google Scholar
Maddika S, Booy EP, Johar D, Gibson SB, Ghavami S, Los M (2005) Cancer-specific toxicity of apoptin is independent of death receptors but involves the loss of mitochondrial membrane potential and the release of mitochondrial cell-death mediators by a Nur77-dependent pathway. J Cell Sci 118(19):4485–4493. doi:10.1242/jcs.02580
Article
CAS
PubMed
Google Scholar
Maddika S, Mendoza FJ, Hauff K, Zamzow CR, Paranjothy T, Los M (2006) Cancer-selective therapy of the future: apoptin and its mechanism of action. Cancer Biol Ther 5(1):10–19
Article
CAS
PubMed
Google Scholar
Malpiedi LP, Diaz CA, Nerli BB, Pessoa A (2013) Single-chain antibody fragments: purification methodologies. Process Biochem 48(8):1242–1251
Article
CAS
Google Scholar
Messmann RA, Vitetta ES, Headlee D, Senderowicz AM, Figg WD, Schindler J, Michiel DF, Creekmore S, Steinberg SM, Kohler D (2000) A phase I study of combination therapy with immunotoxins IgG-HD37-deglycosylated ricin A chain (dgA) and IgG-RFB4-dgA (Combotox) in patients with refractory CD19 (+), CD22 (+) B cell lymphoma. Clin Cancer Res 6(4):1302–1313
CAS
PubMed
Google Scholar
Mitrus I, Missol-Kolka E, PLUCIENNICZAK A, SZALA S (2005) Tumour therapy with genes encoding apoptin and E4orf4. Anticancer Res 25(2A):1087–1090
CAS
PubMed
Google Scholar
Monnier PP, Vigouroux RJ, Tassew NG (2013) In vivo applications of single chain Fv (variable domain)(scFv) fragments. Antibodies 2(2):193–208. doi:10.3390/antib2020193
Article
CAS
Google Scholar
Natesan S, Kataria J, Dhama K, Bhardwaj N, Sylvester A (2006) Anti-neoplastic effect of chicken anemia virus VP3 protein (apoptin) in Rous sarcoma virus-induced tumours in chicken. J Gen Virol 87(10):2933–2940. doi:10.1099/vir.0.82085-0
Article
CAS
PubMed
Google Scholar
Nelson AL (2010) Antibody fragments: hope and hype. MAbs 2(1):77–83
PubMed
Google Scholar
Nitschke L (2005) The role of CD22 and other inhibitory co-receptors in B-cell activation. Curr Opin Immunol 17(3):290–297. doi:10.1016/j.coi.2005.03.005
Article
CAS
PubMed
Google Scholar
Noteborn MH (2004) Chicken anemia virus induced apoptosis: underlying molecular mechanisms. Vet Microbiol 98(2):89–94
Article
CAS
PubMed
Google Scholar
Noteborn MH (2009) Proteins selectively killing tumor cells. Eur J Pharmacol 625(1):165–173. doi:10.1016/j.ejphar.2009.06.068
Article
CAS
PubMed
Google Scholar
Pan Y, Fang L, Fan H, Luo R, Zhao Q, Chen H, Xiao S (2010) Antitumor effects of a recombinant pseudotype baculovirus expressing apoptin in vitro and in vivo. Int J Cancer 126(11):2741–2751. doi:10.1002/ijc.24959
CAS
PubMed
Google Scholar
Peñaloza OMR, Lewandowska M, Stetefeld J, Ossysek K, Madej M, Bereta J, Sobczak M, Shojaei S, Ghavami S, Łos MJ (2014) Apoptins: selective anticancer agents. Trends Mol Med 20(9):519–528. doi:10.1016/j.molmed.2014.07.003
Article
Google Scholar
Peng D, Sun J, Wang Y, Tian J, Zhang Y, Noteborn M, Qu S (2007) Inhibition of hepatocarcinoma by systemic delivery of apoptin gene via the hepatic asialoglycoprotein receptor. Cancer Gene Ther 14(1):66–73. doi:10.1038/sj.cgt.7700985
Article
CAS
PubMed
Google Scholar
Pietersen A, Van der Eb M, Rademaker H, Van den Wollenberg D, Rabelink M, Kuppen P, Van Dierendonck J, Van Ormondt H, Masman D, Van de Velde C (1999) Specific tumor-cell killing with adenovirus vectors containing the apoptin gene. Gene Ther 6(5):882–892. doi:10.1038/sj.gt.3300876
Article
CAS
PubMed
Google Scholar
Potala S, Sahoo SK, Verma RS (2008) Targeted therapy of cancer using diphtheria toxin-derived immunotoxins. Drug Discov Today 13(17):807–815. doi:10.1016/j.drudis.2008.06.017
Article
CAS
PubMed
Google Scholar
Pui C-H, Evans WE (2006) Treatment of acute lymphoblastic leukemia. N Engl J Med 354(2):166–178. doi:10.1056/NEJMra052603
Article
CAS
PubMed
Google Scholar
Raut LS, Chakrabarti PP (2014) Management of relapsed-refractory diffuse large B cell lymphoma. South Asian J Cancer 3(1):66. doi:10.4103/2278-330X.126531
Article
PubMed
PubMed Central
Google Scholar
Sant M, Allemani C, Tereanu C, De Angelis R, Capocaccia R, Visser O, Marcos-Gragera R, Maynadié M, Simonetti A, Lutz J-M (2010) Incidence of hematological malignancies in Europe by morphological subtype: results of the HAEMACARE project. Blood 116(19):3724–3734. doi:10.1182/blood-2010-05-282632
Article
CAS
PubMed
Google Scholar
Sullivan-Chang L, O’Donnell RT, Tuscano JM (2013) Targeting CD22 in B-cell malignancies: current status and clinical outlook. BioDrugs 27(4):293–304. doi:10.1007/s40259-013-0016-7
Article
CAS
PubMed
Google Scholar
Sun J, Yan Y, Wang XT, Liu XW, Peng DJ, Wang M, Tian J, Zong YQ, Zhang YH, Noteborn MH (2009) PTD4-apoptin protein therapy inhibits tumor growth in vivo. Int J Cancer 124(12):2973–2981. doi:10.1002/ijc.24279
Article
CAS
PubMed
Google Scholar
Tedder TF, Poe JC, Haas KM (2005) CD22: a multifunctional receptor that regulates B lymphocyte survival and signal transduction. Adv Immunol 88:1–50. doi:10.1016/S0065-2776(05)88001-0
Article
CAS
PubMed
Google Scholar
Teo EC-Y, Chew Y, Phipps C (2016) A review of monoclonal antibody therapies in lymphoma. Crit Rev Oncol Hematol 97:72–84. doi:10.1016/j.critrevonc.2015.08.014
Article
PubMed
Google Scholar
Tu X, LaVallee T, Lechleider R (2011) CD22 as a target for cancer therapy. J Exp Ther Oncol 9(3):241–248
CAS
PubMed
Google Scholar
Vallera DA, Brechbiel MW, Burns LJ, Panoskaltsis-Mortari A, Dusenbery KE, Clohisy DR, Vitetta ES (2005a) Radioimmunotherapy of CD22-expressing Daudi tumors in nude mice with a 90Y-labeled anti-CD22 monoclonal antibody. Clin Cancer Res 11(21):7920–7928. doi:10.1158/1078-0432.CCR-05-0725
Article
CAS
PubMed
Google Scholar
Vallera DA, Todhunter DA, Kuroki DW, Shu Y, Sicheneder A, Chen H (2005b) A bispecific recombinant immunotoxin, DT2219, targeting human CD19 and CD22 receptors in a mouse xenograft model of B-cell leukemia/lymphoma. Clin Cancer Res 11(10):3879–3888. doi:10.1158/1078-0432.CCR-04-2290
Article
CAS
PubMed
Google Scholar
Wayne AS, FitzGerald DJ, Kreitman RJ, Pastan I (2014) Immunotoxins for leukemia. Blood 123(16):2470–2477. doi:10.1182/blood-2014-01-492256
Article
CAS
PubMed
PubMed Central
Google Scholar
Weber T, Mavratzas A, Kiesgen S, Haase S, Bötticher B, Exner E, Mier W, Grosse-Hovest L, Jäger D, Arndt MA (2015) A humanized anti-CD22-onconase antibody-drug conjugate mediates highly potent destruction of targeted tumor cells. J Immunol Res 2015:561814. doi:10.1155/2015/561814
Article
PubMed
PubMed Central
Google Scholar
Weisser NE, Hall JC (2009) Applications of single-chain variable fragment antibodies in therapeutics and diagnostics. Biotechnol Adv 27(4):502–520. doi:10.1016/j.biotechadv.2009.04.004
Article
CAS
PubMed
Google Scholar
Wu Y, Zhang X, Wang X, Wang L, Hu S, Liu X, Meng S (2011) Apoptin enhances the oncolytic properties of newcastle disease virus. Intervirology 55(4):276–286. doi:10.1159/000328325
PubMed
Google Scholar
Zarei N, Vaziri B, Shokrgozar MA, Mahdian R, Fazel R, Khalaj V (2014) High efficient expression of a functional humanized single-chain variable fragment (scFv) antibody against CD22 in Pichia pastoris. Appl Microbiol Biotechnol 98(24):10023–10039. doi:10.1007/s00253-014-6071-2
Article
CAS
PubMed
Google Scholar
Zhuang S-M, Shvarts A, van Ormondt H, Jochemsen AG, van der Eb AJ, Noteborn MH (1995) Apoptin, a protein derived from chicken anemia virus, induces p53-independent apoptosis in human osteosarcoma cells. Cancer Res 55(3):486–489
CAS
PubMed
Google Scholar