Adney B, Baker J: Measurement of Cellulase Activities (LAP). NREL, Golden, CO; 1996.
Google Scholar
Alkasrawi M, Rudolf A, Lidén G: Influence of strain and cultivation procedure on the performance of simultaneous saccharification and fermentation of steam pretreated spruce. Enzyme Microb Technol 2006,38(1–2):279–287.
Article
CAS
Google Scholar
Almeida JRM, Modig T, Petersson A, Hahn-Hägerdal B, Lidén G, Gorwa-Grauslund MF: Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae . J Chem Tech Biotechnol 2007,82(4):340–349. 10.1002/jctb.1676
Article
CAS
Google Scholar
Bengtsson O, Hahn-Hägerdal B, Gorwa-Grauslund M: Xylose reductase from Pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae . Biotechnol Biofuels 2009,2(1):9. 10.1186/1754-6834-2-9
Article
PubMed Central
PubMed
Google Scholar
Berghem LER, Pettersson LG: The mechanism of enzymatic cellulose degradation. Eur J Biochem 1973,37(1):21–30. 10.1111/j.1432-1033.1973.tb02952.x
Article
CAS
PubMed
Google Scholar
Bertilsson M, Andersson J, Lidén G: Modeling simultaneous glucose and xylose uptake in Saccharomyces cerevisiae from kinetics and gene expression of sugar transporters. Bioprocess Biosyst Eng 2008, 31: 369–377. 10.1007/s00449-007-0169-1
Article
CAS
PubMed
Google Scholar
Boles E, Müller S, Zimmermann FK: A multi-layered sensory system controls yeast glycolytic gene expression. Mol Microbiol 1996, 19: 641–642. 10.1046/j.1365-2958.1996.t01-1-442924.x
Article
CAS
PubMed
Google Scholar
Bruinenberg PM, Bot PHM, Dijken JP, Scheffers WA: The role of redox balances in the anaerobic fermentation of xylose by yeasts. Appl Microbiol Biotechnol 1983,18(5):287–292. 10.1007/BF00500493
Article
CAS
Google Scholar
Galbe M, Sassner P, Wingren A, Zacchi G: Process engineering economics of bioethanol production. In Biofuels, Advances in Biochemical Engineering/Biotechnology. Volume 108. Edited by: Olsson L. Springer Berlin/Heidelberg; 2007:303–327. full_text
Google Scholar
Gárdonyi M, Jeppsson M, Liden G, Gorwa-Grauslund MF, Hahn-Hägerdal B: Control of xylose consumption by xylose transport in recombinant Saccharomyces cerevisiae . Biotechnol Bioeng 2003,82(7):818–824. 10.1002/bit.10631
Article
PubMed
Google Scholar
Gietz R, Sugino A: New yeast - Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 1988,74(2):527–534. 10.1016/0378-1119(88)90185-0
Article
CAS
PubMed
Google Scholar
Gietz RD, Schiestl RH, Willems AR, Woods RA: Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 1995,11(4):355–360. 10.1002/yea.320110408
Article
CAS
PubMed
Google Scholar
Hahn-Hägerdal B, Karhumaa K, Jeppsson M, Gorwa-Grauslund M: Metabolic engineering for pentose utilization in Saccharomyces cerevisiae . Adv Biochem Eng Biotechnol 2007, 108: 147–177.
PubMed
Google Scholar
Hamacher T, Becker J, Gárdonyi M, Hahn-Hägerdal B, Boles E: Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology 2002,148(Pt-9):2783–2788.
CAS
PubMed
Google Scholar
Hector R, Qureshi N, Hughes S, Cotta M: Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose improves aerobic xylose consumption. Appl Microbiol Biotechnol 2008,80(4):675–684. 10.1007/s00253-008-1583-2
Article
CAS
PubMed
Google Scholar
Karhumaa K, Hahn-Hägerdal B, Gorwa-Grauslund MF: Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Yeast 2005,22(5):359–368. 10.1002/yea.1216
Article
CAS
PubMed
Google Scholar
Katahira S, Ito M, Takema H, Fujita Y, Tanino T, Tanaka T, Fukuda H, Kondo A: Improvement of ethanol productivity during xylose and glucose co-fermentation by xylose-assimilating S. cerevisiae via expression of glucose transporter Sut1. Enzyme Microb Technol 2008,43(2):115–119. 10.1016/j.enzmictec.2008.03.001
Article
CAS
Google Scholar
Kilian SG, Uden N: Transport of xylose and glucose in the xylose-fermenting yeast Pichia stipitis . Appl Microbiol Biotechnol 1988,27(5):545–548.
Article
CAS
Google Scholar
Krahulec S, Petschacher B, Wallner M, Longus K, Klimacek M, Nidetzky B: Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae : role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization. Microb Cell Fact 2010,9(1):16. 10.1186/1475-2859-9-16
Article
PubMed Central
PubMed
Google Scholar
Kötter P, Ciriacy M: Xylose fermentation by Saccharomyces cerevisiae . Appl Microbiol Biotechnol 1993,38(6):776–783. 10.1007/BF00167144
Article
Google Scholar
Leandro MJ, Gonçalves P, Spencer-Martins I: Two glucose/xylose transporter genes from the yeast Candida intermedia : first molecular characterization of a yeast xylose-H+
symporter. Biochem J 2006, 395: 543–549. 10.1042/BJ20051465
Article
CAS
PubMed Central
PubMed
Google Scholar
Leandro MJ, Spencer-Martins I, Goncalves P: The expression in Saccharomyces cerevisiae of a glucose/xylose symporter from Candida intermedia is affected by the presence of a glucose/xylose facilitator. Microbiology 2008,154(6):1646–1655. 10.1099/mic.0.2007/015511-0
Article
CAS
PubMed
Google Scholar
Matsushika A, Inoue H, Kodaki T, Sawayama S: Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl Microbiol Biotechnol 2009,84(1):37–53. 10.1007/s00253-009-2101-x
Article
CAS
PubMed
Google Scholar
Meinander NQ, Boels I, Hahn-Hägerdal B: Fermentation of xylose/glucose mixtures by metabolically engineered Saccharomyces cerevisiae strains expressing XYL1 and XYL2 from Pichia stipitis with and without overexpression of TAL1. Bioresour Technol 1999,68(1):79–87. 10.1016/S0960-8524(98)00085-6
Article
CAS
Google Scholar
Meinander NQ, Hahn-Hägerdal B: Influence of cosubstrate concentration on xylose conversion by recombinant, XYL1-expressing Saccharomyces cerevisiae : a comparison of different sugars and ethanol as cosubstrates. Appl Environ Microbiol 1997,63(5):1959–1964.
CAS
PubMed Central
PubMed
Google Scholar
Olofsson K, Bertilsson M, Lidén G: A short review on SSF - an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol Biofuels 2008.,1(7):
Google Scholar
Olofsson K, Palmqvist B, Liden G: Improving simultaneous saccharification and co-fermentation of pretreated wheat straw using both enzyme and substrate feeding. Biotechnol Biofuels 2010,3(1):17.
PubMed Central
PubMed
Google Scholar
Olofsson K, Rudolf A, Lidén G: Designing simultaneous saccharification and fermentation for improved xylose conversion by a recombinant strain of Saccharomyces cerevisiae . J Biotechnol 2008, 134: 112–120. 10.1016/j.jbiotec.2008.01.004
Article
CAS
PubMed
Google Scholar
Palmqvist E, Hahn-Hägerdal B, Galbe M, Larsson M, Stenberg K, Szengyel Z, Tengborg C, Zacchi G: Design and operation of a bench-scale process development unit for the production of ethanol from lignocellulosics. Bioresour Technol 1996,58(2):171–179. 10.1016/S0960-8524(96)00096-X
Article
CAS
Google Scholar
Pitkänen J-P, Aristidou A, Salusjärvi L, Ruohonen L, Penttilä M: Metabolic flux analysis of xylose metabolism in recombinant Saccharomyces cerevisiae using continuous culture. Metab Eng 2003,5(1):16–31. 10.1016/S1096-7176(02)00012-5
Article
PubMed
Google Scholar
Runquist D, Fonseca C, Rådström P, Spencer-Martins I, Hahn-Hägerdal B: Expression of the Gxf1 transporter from Candida intermedia improves fermentation performance in recombinant xylose-utilizing Saccharomyces cerevisiae . Appl Microbiol Biotechnol 2009,82(1):123–130. 10.1007/s00253-008-1773-y
Article
CAS
PubMed
Google Scholar
Runquist D, Hahn-Hagerdal B, Bettiga M: A randomly mutagenized xylose reductase increases the ethanol productivity in xylose-utilizing Saccharomyces cerevisiae . Appl Environ Microbiol 2010,76(23):7796–7802. 10.1128/AEM.01505-10
Article
CAS
PubMed Central
PubMed
Google Scholar
Runquist D, Hahn-Hagerdal B, Radstrom P: Comparison of heterologous xylose transporters in recombinant Saccharomyces cerevisiae . Biotechnol Biofuels 2010,3(1):5. 10.1186/1754-6834-3-5
Article
PubMed Central
PubMed
Google Scholar
Saloheimo A, Rauta J, Stasyk O, Sibirny A, Penttilä M, Ruohonen L: Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases. Appl Microbiol Biotechnol 2007,74(5):1041–1052. 10.1007/s00253-006-0747-1
Article
CAS
PubMed
Google Scholar
Sambrook J, Fritsch EF, Maniatis T: Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA; 1989.
Google Scholar
Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D: Determination of sugars, byproducts, and degradation products in liquid fraction process samples(LAP). NREL, Golden, CO; 2008.
Google Scholar
Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D: Determination of structural carbohydrates and lignin in biomass(LAP). NREL, Golden, CO; 2008.
Google Scholar
Taherzadeh MJ, Lidén G, Gustafsson L, Niklasson C: The effects of pantothenate deficiency and acetate addition on anaerobic batch fermentation of glucose by Saccharomyces cerevisiae . Appl Microbiol Biotechnol 1996,46(2):176–182. 10.1007/s002530050801
Article
CAS
PubMed
Google Scholar
Takagi M, Abe S, Suzuki S, Emert GH, Yata N: A method for production of alcohol directly from cellulose using cellulase and yeast. In Bioconversion Symposium, New Delhi, India Edited by: Ghose TK. 1977, 551–571.
Google Scholar
Wahlbom CF, Hahn-Hägerdal B: Furfural, 5-hydroxymethyl furfural, and acetoin act as external electron acceptors during anaerobic fermentation of xylose in recombinant Saccharomyces cerevisiae . Biotechnol Bioeng 2002,78(2):172–178. 10.1002/bit.10188
Article
CAS
PubMed
Google Scholar
Van Vleet JH, Jeffries TW: Yeast metabolic engineering for hemicellulosic ethanol production. Curr Opin Biotechnol 2009,20(3):300–306. 10.1016/j.copbio.2009.06.001
Article
CAS
PubMed
Google Scholar
Watanabe S, Abu Saleh A, Pack SP, Annaluru N, Kodaki T, Makino K: Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from Pichia stipitis . Microbiology 2007,153(9):3044–3054. 10.1099/mic.0.2007/007856-0
Article
CAS
PubMed
Google Scholar
Wingren A, Galbe M, Zacchi G: Techno-economic evaluation of producing ethanol from softwood: Comparison of SSF and SHF and identification of bottlenecks. Biotechnol Prog 2003,19(4):1109–1117. 10.1021/bp0340180
Article
CAS
PubMed
Google Scholar
Öhgren K, Bengtsson O, Gorwa-Grauslund MF, Galbe M, Hahn-Hägerdal B, Zacchi G: Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fiber content with Saccharomyces cerevisiae TMB3400. J Biotechnol 2006,126(4):488–498. 10.1016/j.jbiotec.2006.05.001
Article
PubMed
Google Scholar