Abdel-Hamid MS, Fouda A, El-Ela HKA, El-Ghamry AA, Hassan SE (2021) Plant growth-promoting properties of bacterial endophytes isolated from roots of Thymus vulgaris L. and investigate their role as biofertilizers to enhance the essential oil contents. Biomol Concepts 12:175–196. https://doi.org/10.1515/bmc-2021-0019
Article
CAS
Google Scholar
Adam E, Muller H, Erlacher A, Berg G (2016) Complete genome sequences of the Serratia plymuthica strains 3Rp8 and 3Re4-18, two rhizosphere bacteria with antagonistic activity towards fungal phytopathogens and plant growth promoting abilities. Stand Genom Sci 11:61. https://doi.org/10.1186/s40793-016-0185-3
Article
Google Scholar
Adeleke BS, Ayangbenro AS, Babalola OO (2021) Genomic analysis of endophytic Bacillus cereus T4S and its plant growth-promoting traits. Plants 10:1776. https://doi.org/10.3390/plants10091776
Article
CAS
Google Scholar
Afzal I, Shinwari ZK, Sikandar S, Shahzad S (2019) Plant beneficial endophytic bacteria: mechanisms, diversity, host range and genetic determinants. Microbiol Res 221:36–49. https://doi.org/10.1016/j.micres.2019.02.001
Article
CAS
Google Scholar
Ahmad F, Ahmad I, Khan MS (2005) Indole acetic acid production by the indigenous isolates of azotobacter and fluorescent Pseudomonas in the presence and absence of tryptophan. Turk J Biol 29:29–34
CAS
Google Scholar
Albarano L, Esposito R, Ruocco N, Costantini M (2020) Genome mining as new challenge in natural products discovery. Mar Drugs 18:199. https://doi.org/10.3390/md18040199
Article
CAS
Google Scholar
Asaf S, Khan AL, Khan MA, Al-Harrasi A, Lee IJ (2018) Complete genome sequencing and analysis of endophytic Sphingomonas sp. LK11 and its potential in plant growth. 3 Biotech 8:389. https://doi.org/10.1007/s13205-018-1403-z
Article
Google Scholar
Asghar H, Zahir Z, Arshad M, Khaliq A (2002) Relationship between in vitro production of auxins by rhizobacteria and their growth-promoting activities in Brassica juncea L. Biol Fertil Soils 35:231–237. https://doi.org/10.1007/s00374-002-0462-8
Article
CAS
Google Scholar
Atencio LA, Ca Boya P, Martin HC, Mejia LC, Dorrestein PC, Gutierrez M (2020) Genome mining, microbial interactions, and molecular networking reveals new dibromoalterochromides from strains of Pseudoalteromonas of Coiba National Park-Panama. Mar Drugs 18:456. https://doi.org/10.3390/md18090456
Article
CAS
Google Scholar
Awolope OK, O’Driscoll NH, Di Salvo A, Lamb AJ (2021) The complete genome sequence of Hafnia alvei A23BA; a potential antibiotic-producing rhizobacterium. BMC Res Notes 14:8. https://doi.org/10.1186/s13104-020-05418-2
Article
CAS
Google Scholar
Babalola OO, Adeleke BS, Ayangbenro AS (2021) Whole genome sequencing of sunflower root-associated Bacillus cereus. Evol Bioinform Online 17:11769343211038948. https://doi.org/10.1177/11769343211038948
Article
Google Scholar
Baltz RH (2019) Natural product drug discovery in the genomic era: realities, conjectures, misconceptions, and opportunities. J Ind Microbiol Biotechnol 46:281–299. https://doi.org/10.1007/s10295-018-2115-4
Article
CAS
Google Scholar
Bauman KD, Butler KS, Moore BS, Chekan JR (2021) Genome mining methods to discover bioactive natural products. Nat Prod Rep 38:2100–2129. https://doi.org/10.1039/d1np00032b
Article
CAS
Google Scholar
Belaouni HA, Compant S, Antonielli L, Nikolic B, Zitouni A, Sessitsch A (2022) In-depth genome analysis of Bacillus sp. BH32, a salt stress-tolerant endophyte obtained from a halophyte in a semiarid region. Appl Microbiol Biotechnol 106:3113–3137. https://doi.org/10.1007/s00253-022-11907-0
Article
CAS
Google Scholar
Besaury L, Remond C (2020) Draft genome sequence of Saccharibacillus sp. strain WB 17, isolated from wheat phyllosphere. Microbiol Resour Announc. https://doi.org/10.1128/MRA.01201-19
Article
Google Scholar
Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Fact 13:66. https://doi.org/10.1186/1475-2859-13-66
Article
Google Scholar
Blin K, Medema MH, Kazempour D, Fischbach MA, Breitling R, Takano E, Weber T (2013) antiSMASH 2.0—a versatile platform for genome mining of secondary metabolite producers. Nucleic Acids Res 41:W204–W212. https://doi.org/10.1093/nar/gkt449
Article
Google Scholar
Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, Medema MH, Weber T (2019) antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 47:W81–W87. https://doi.org/10.1093/nar/gkz310
Article
CAS
Google Scholar
Bottini R, Cassan F, Piccoli P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol 65:497–503. https://doi.org/10.1007/s00253-004-1696-1
Article
CAS
Google Scholar
Brookbank BP, Patel J, Gazzarrini S, Nambara E (2021) Role of basal ABA in plant growth and development. Genes 12:1936. https://doi.org/10.3390/genes12121936
Article
CAS
Google Scholar
Chandra A, Chandra P, Tripathi P (2021) Whole genome sequence insight of two plant growth-promoting bacteria (B. subtilis BS87 and B. megaterium BM89) isolated and characterized from sugarcane rhizosphere depicting better crop yield potentiality. Microbiol Res 247:126733. https://doi.org/10.1016/j.micres.2021.126733
Article
CAS
Google Scholar
Chen L, Shi H, Heng J, Wang D, Bian K (2019) Antimicrobial, plant growth-promoting and genomic properties of the peanut endophyte Bacillus velezensis LDO2. Microbiol Res 218:41–48. https://doi.org/10.1016/j.micres.2018.10.002
Article
CAS
Google Scholar
D’Aes J, Hua GK, De Maeyer K, Pannecoucque J, Forrez I, Ongena M, Dietrich LE, Thomashow LS, Mavrodi DV, Hofte M (2011) Biological control of Rhizoctonia root rot on bean by phenazine- and cyclic lipopeptide-producing Pseudomonas CMR12a. Phytopathology 101:996–1004. https://doi.org/10.1094/PHYTO-11-10-0315
Article
CAS
Google Scholar
Dale SE, Sebulsky MT, Heinrichs DE (2004) Involvement of SirABC in iron-siderophore import in Staphylococcus aureus. J Bacteriol 186:8356–8362. https://doi.org/10.1128/JB.186.24.8356-8362.2004
Article
CAS
Google Scholar
Darji H, Verma N, Lugani Y, Mehrotra P, Sindhu DK, Vemuluri VR (2021) Polyphasic characterization of and genomic insights into a haloalkali-tolerant Saccharibacillus alkalitolerans sp. nov., that produces three cellulase isozymes and several antimicrobial compounds. Antonie Van Leeuwenhoek 114:1043–1057. https://doi.org/10.1007/s10482-021-01575-x
Article
CAS
Google Scholar
Deleu M, Paquot M, Nylander T (2008) Effect of fengycin, a lipopeptide produced by Bacillus subtilis, on model biomembranes. Biophys J 94:2667–2679. https://doi.org/10.1529/biophysj.107.114090
Article
CAS
Google Scholar
Du J, Yuan Z, Ma Z, Song J, Xie X, Chen Y (2014) KEGG-PATH: Kyoto encyclopedia of genes and genomes-based pathway analysis using a path analysis model. Mol Biosyst 10:2441–2447. https://doi.org/10.1039/c4mb00287c
Article
CAS
Google Scholar
Ellermann M, Arthur JC (2017) Siderophore-mediated iron acquisition and modulation of host–bacterial interactions. Free Radic Biol Med 105:68–78. https://doi.org/10.1016/j.freeradbiomed.2016.10.489
Article
CAS
Google Scholar
Fiodor A, Singh S, Pranaw K (2021) The contrivance of plant growth promoting microbes to mitigate climate change impact in agriculture. Microorganisms 9:1841. https://doi.org/10.3390/microorganisms9091841
Article
CAS
Google Scholar
Forman S, Nagiec MJ, Abney J, Perry RD, Fetherston JD (2007) Analysis of the aerobactin and ferric hydroxamate uptake systems of Yersinia pestis. Microbiology 153:2332–2341. https://doi.org/10.1099/mic.0.2006/004275-0
Article
CAS
Google Scholar
Fouda AH, Hassan S-D, Eid AM, Ewais E-D (2015) Biotechnological applications of fungal endophytes associated with medicinal plant Asclepias sinaica (Bioss.). Ann Agric Sci 60:95–104. https://doi.org/10.1016/j.aoas.2015.04.001
Article
Google Scholar
Fu SF, Sun PF, Lu HY, Wei JY, Xiao HS, Fang WT, Cheng BY, Chou JY (2016) Plant growth-promoting traits of yeasts isolated from the phyllosphere and rhizosphere of Drosera spatulata Lab. Fungal Biol 120:433–448. https://doi.org/10.1016/j.funbio.2015.12.006
Article
CAS
Google Scholar
Gebhard S, Tran SL, Cook GM (2006) The Phn system of Mycobacterium smegmatis: a second high-affinity ABC-transporter for phosphate. Microbiology 152:3453–3465. https://doi.org/10.1099/mic.0.29201-0
Article
CAS
Google Scholar
Geddes BA, Ryu MH, Mus F, Garcia Costas A, Peters JW, Voigt CA, Poole P (2015) Use of plant colonizing bacteria as chassis for transfer of N(2)-fixation to cereals. Curr Opin Biotechnol 32:216–222. https://doi.org/10.1016/j.copbio.2015.01.004
Article
CAS
Google Scholar
Gray EJ, Lee KD, Souleimanov AM, Di Falco MR, Zhou X, Ly A, Charles TC, Driscoll BT, Smith DL (2006) A novel bacteriocin, thuricin 17, produced by plant growth promoting rhizobacteria strain Bacillus thuringiensis NEB17: isolation and classification. J Appl Microbiol 100:545–554. https://doi.org/10.1111/j.1365-2672.2006.02822.x
Article
CAS
Google Scholar
Guerrieri MC, Fiorini A, Fanfoni E, Tabaglio V, Cocconcelli PS, Trevisan M, Puglisi E (2021) Integrated genomic and greenhouse assessment of a novel plant growth-promoting Rhizobacterium for tomato plant. Front Plant Sci 12:660620. https://doi.org/10.3389/fpls.2021.660620
Article
Google Scholar
Guo S, Li X, He P, Ho H, Wu Y, He Y (2015) Whole-genome sequencing of Bacillus subtilis XF-1 reveals mechanisms for biological control and multiple beneficial properties in plants. J Ind Microbiol Biotechnol 42:925–937. https://doi.org/10.1007/s10295-015-1612-y
Article
CAS
Google Scholar
Guo DJ, Singh RK, Singh P, Li DP, Sharma A, Xing YX, Song XP, Yang LT, Li YR (2020) Complete genome sequence of Enterobacter roggenkampii ED5, a nitrogen fixing plant growth promoting endophytic bacterium with biocontrol and stress tolerance properties, isolated from sugarcane root. Front Microbiol 11:580081. https://doi.org/10.3389/fmicb.2020.580081
Article
Google Scholar
Gupta A, Gopal M, Thomas GV, Manikandan V, Gajewski J, Thomas G, Seshagiri S, Schuster SC, Rajesh P, Gupta R (2014) Whole genome sequencing and analysis of plant growth promoting bacteria isolated from the rhizosphere of plantation crops coconut, cocoa and arecanut. PLoS ONE 9:e104259. https://doi.org/10.1371/journal.pone.0104259
Article
CAS
Google Scholar
Han H, Gao S, Wang Q, He LY, Sheng XF (2016) Saccharibacillus qingshengii sp. nov., isolated from a lead–cadmium tailing. Int J Syst Evol Microbiol 66:4645–4649. https://doi.org/10.1099/ijsem.0.001404
Article
CAS
Google Scholar
Hardoim PR, van Overbeek LS, Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471. https://doi.org/10.1016/j.tim.2008.07.008
Article
CAS
Google Scholar
Henry CS, DeJongh M, Best AA, Frybarger PM, Linsay B, Stevens RL (2010) High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat Biotechnol 28:977–982. https://doi.org/10.1038/nbt.1672
Article
CAS
Google Scholar
Huang AC, Osbourn A (2019) Plant terpenes that mediate below-ground interactions: prospects for bioengineering terpenoids for plant protection. Pest Manag Sci 75:2368–2377. https://doi.org/10.1002/ps.5410
Article
CAS
Google Scholar
Hwang HH, Chien PR, Huang FC, Hung SH, Kuo CH, Deng WL, Chiang EI, Huang CC (2021) A plant endophytic bacterium, Burkholderia seminalis strain 869T2, promotes plant growth in Arabidopsis, Pak Choi, Chinese amaranth, lettuces, and other vegetables. Microorganisms 9:1703. https://doi.org/10.3390/microorganisms9081703
Article
CAS
Google Scholar
Iqbal S, Vollmers J, Janjua HA (2021a) Genome mining and comparative genome analysis revealed niche-specific genome expansion in antibacterial Bacillus pumilus strain SF-4. Genes 12:1060. https://doi.org/10.3390/genes12071060
Article
CAS
Google Scholar
Iqbal S, Ullah N, Janjua HA (2021b) In vitro evaluation and genome mining of Bacillus subtilis strain RS10 reveals its biocontrol and plant growth-promoting potential. Agriculture 11:1273. https://doi.org/10.3390/agriculture11121273
Article
CAS
Google Scholar
Jardine KJ, Jardine AB, Souza VF, Carneiro V, Ceron JV, Gimenez BO, Soares CP, Durgante FM, Higuchi N, Manzi AO, Gonçalves JFC, Garcia S, Martin ST, Zorzanelli RF, Piva LR, Chambers JQ (2016) Methanol and isoprene emissions from the fast growing tropical pioneer species Vismia guianensis (Aubl.) Pers. (Hypericaceae) in the central Amazon forest. Atm Chem Phys 16:6441–6452. https://doi.org/10.5194/acp-16-6441-2016
Article
CAS
Google Scholar
Ji C, Zhang M, Kong Z, Chen X, Wang X, Ding W, Lai H, Guo Q (2021) Genomic analysis reveals potential mechanisms underlying promotion of tomato plant growth and antagonism of soilborne pathogens by Bacillus amyloliquefaciens Ba13. Microbiol Spectr 9:e0161521. https://doi.org/10.1128/Spectrum.01615-21
Article
Google Scholar
Jiang L, Jeong JC, Lee JS, Park JM, Yang JW, Lee MH, Choi SH, Kim CY, Kim DH, Kim SW, Lee J (2019a) Potential of Pantoea dispersa as an effective biocontrol agent for black rot in sweet potato. Sci Rep 9:16354. https://doi.org/10.1038/s41598-019-52804-3
Article
CAS
Google Scholar
Jiang L, Lim CJ, Jeong JC, Kim CY, Kim DH, Kim SW, Lee J (2019b) Whole-genome sequence data and analysis of Saccharibacillus sp. ATSA2 isolated from Kimchi cabbage seeds. Data Brief 26:104465. https://doi.org/10.1016/j.dib.2019.104465
Article
Google Scholar
Jiang L, Lim CJ, Kim SG, Jeong JC, Kim CY, Kim DH, Kim SW, Lee J (2020) Saccharibacillus brassicae sp. nov., an endophytic bacterium isolated from kimchi cabbage (Brassica rapa subsp. pekinensis) seeds. J Microbiol 58:24–29. https://doi.org/10.1007/s12275-020-9346-6
Article
CAS
Google Scholar
Kammler M, Schon C, Hantke K (1993) Characterization of the ferrous iron uptake system of Escherichia coli. J Bacteriol 175:6212–6219. https://doi.org/10.1128/jb.175.19.6212-6219.1993
Article
CAS
Google Scholar
Kampfer P, Busse HJ, Kleinhagauer T, McInroy JA, Glaeser SP (2016) Saccharibacillus endophyticus sp. nov., an endophyte of cotton. Int J Syst Evol Microbiol 66:5134–5139. https://doi.org/10.1099/ijsem.0.001484
Article
CAS
Google Scholar
Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30. https://doi.org/10.1093/nar/28.1.27
Article
CAS
Google Scholar
Kanehisa M, Sato Y, Morishima K (2016) BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 428:726–731. https://doi.org/10.1016/j.jmb.2015.11.006
Article
CAS
Google Scholar
Kielak AM, Cipriano MA, Kuramae EE (2016) Acidobacteria strains from subdivision 1 act as plant growth-promoting bacteria. Arch Microbiol 198:987–993. https://doi.org/10.1007/s00203-016-1260-2
Article
CAS
Google Scholar
Kiesewalter HT, Lozano-Andrade CN, Wibowo M, Strube ML, Maroti G, Snyder D, Jorgensen TS, Larsen TO, Cooper VS, Weber T, Kovacs AT (2021) Genomic and chemical diversity of Bacillus subtilis secondary metabolites against plant pathogenic fungi. mSystems 6:e00770-20. https://doi.org/10.1128/mSystems.00770-20
Article
Google Scholar
Kleinheinz KA, Joensen KG, Larsen MV (2014) Applying the ResFinder and VirulenceFinder web-services for easy identification of acquired antibiotic resistance and E. coli virulence genes in bacteriophage and prophage nucleotide sequences. Bacteriophage 4:e27943. https://doi.org/10.4161/bact.27943
Article
Google Scholar
Kramer J, Ozkaya O, Kummerli R (2020) Bacterial siderophores in community and host interactions. Nat Rev Microbiol 18:152–163. https://doi.org/10.1038/s41579-019-0284-4
Article
CAS
Google Scholar
Kushwaha P, Kashyap PL, Srivastava AK, Tiwari RK (2020) Plant growth promoting and antifungal activity in endophytic Bacillus strains from pearl millet (Pennisetum glaucum). Braz J Microbiol 51:229–241. https://doi.org/10.1007/s42770-019-00172-5
Article
CAS
Google Scholar
Lee KD, Gray EJ, Mabood F, Jung WJ, Charles T, Clark SR, Ly A, Souleimanov A, Zhou X, Smith DL (2009) The class IId bacteriocin thuricin-17 increases plant growth. Planta 229:747–755. https://doi.org/10.1007/s00425-008-0870-6
Article
CAS
Google Scholar
Liu W, Wang Q, Hou J, Tu C, Luo Y, Christie P (2016) Whole genome analysis of halotolerant and alkalotolerant plant growth-promoting rhizobacterium Klebsiella sp. D5A. Sci Rep 6:26710. https://doi.org/10.1038/srep26710
Article
CAS
Google Scholar
Luck SN, Turner SA, Rajakumar K, Sakellaris H, Adler B (2001) Ferric dicitrate transport system (Fec) of Shigella flexneri 2a YSH6000 is encoded on a novel pathogenicity Island carrying multiple antibiotic resistance genes. Infect Immun 69:6012–6021. https://doi.org/10.1128/IAI.69.10.6012-6021.2001
Article
CAS
Google Scholar
Lurthy T, Cantat C, Jeudy C, Declerck P, Gallardo K, Barraud C, Leroy F, Ourry A, Lemanceau P, Salon C, Mazurier S (2020) Impact of bacterial siderophores on iron status and ionome in pea. Front Plant Sci 11:730. https://doi.org/10.3389/fpls.2020.00730
Article
Google Scholar
Maheshwari R, Bhutani N, Suneja P (2020) Isolation and characterization of ACC deaminase producing endophytic Bacillus mojavensis PRN2 from Pisum sativum. Iran J Biotechnol 18:e2308. https://doi.org/10.30498/IJB.2020.137279.2308
Article
Google Scholar
Majeed A, Muhammad Z, Ahmad H (2018) Plant growth promoting bacteria: role in soil improvement, abiotic and biotic stress management of crops. Plant Cell Rep 37:1599–1609. https://doi.org/10.1007/s00299-018-2341-2
Article
CAS
Google Scholar
Marschner P, Rengel Z (2007) Contributions of rhizosphere interactions to soil biological fertility. In: Abbott LK, Murphy DV (eds) Soil biological fertility: a key to sustainable land use in agriculture. Springer, Dordrecht
Google Scholar
Martin JF, Liras P (2021) Molecular mechanisms of phosphate sensing, transport and signalling in streptomyces and related actinobacteria. Int J Mol Sci 22:1129. https://doi.org/10.3390/ijms22031129
Article
CAS
Google Scholar
Masunaka A, Hyakumachi M, Takenaka S (2011) Plant growth-promoting fungus, Trichoderma koningi suppresses isoflavonoid phytoalexin vestitol production for colonization on/in the roots of Lotus japonicus. Microbes Environ 26:128–134. https://doi.org/10.1264/jsme2.me10176
Article
Google Scholar
Murata D, Sawano S, Ohike T, Okanami M, Ano T (2013) Isolation of antifungal bacteria from Japanese fermented soybeans, natto. J Environ Sci 25(Suppl 1):S127–S131. https://doi.org/10.1016/S1001-0742(14)60641-0
Article
Google Scholar
Nanjani S, Soni R, Paul D, Keharia H (2022) Genome analysis uncovers the prolific antagonistic and plant growth-promoting potential of endophyte Bacillus velezensis K1. Gene 836:146671. https://doi.org/10.1016/j.gene.2022.146671
Article
CAS
Google Scholar
Nasrin S, Hossain MJ, Liles MR (2015) Draft genome sequence of Bacillus amyloliquefaciens AP183 with antibacterial activity against methicillin-resistant Staphylococcus aureus. Genome Announc 3:e00162-15. https://doi.org/10.1128/genomeA.00162-15
Article
Google Scholar
Nelson BA, Ramaiya P, Lopez de Leon A, Kumar R, Crinklaw A, Jolkovsky E, Crane JM, Bergstrom GC, Rey MW (2014) Complete genome sequence for the fusarium head blight antagonist Bacillus amyloliquefaciens strain TrigoCor 1448. Genome Announc 2:e00219-14. https://doi.org/10.1128/genomeA.00219-14
Article
Google Scholar
Nishu SD, No JH, Lee TK (2022) Transcriptional response and plant growth promoting activity of Pseudomonas fluorescens DR397 under drought stress conditions. Microbiol Spectr 10:e0097922. https://doi.org/10.1128/spectrum.00979-22
Article
CAS
Google Scholar
Olanrewaju OS, Glick BR, Babalola OO (2017) Mechanisms of action of plant growth promoting bacteria. World J Microbiol Biotechnol 33:197. https://doi.org/10.1007/s11274-017-2364-9
Article
CAS
Google Scholar
Piccoli P, Bottini R (2013) Terpene production by bacteria and its involvement in plant growth promotion, stress alleviation, and yield increase. Mol Microb Ecol Rhizosph 1:335–343. https://doi.org/10.1002/9781118297674.ch31
Article
CAS
Google Scholar
Raturi G, Sharma Y, Mandlik R, Kumawat S, Rana N, Dhar H, Tripathi DK, Sonah H, Sharma TR, Deshmukh R (2022) Genomic landscape highlights molecular mechanisms involved in silicate solubilization, stress tolerance, and potential growth-promoting activity of bacterium Enterobacter sp. LR6. Cells 11:3622. https://doi.org/10.3390/cells11223622
Article
CAS
Google Scholar
Rikame T, Borde M (2022) Whole genome, functional annotation and comparative genomics of plant growth-promoting bacteria Pseudomonas aeruginosa (NG61) with potential application in agro-industry. Curr Microbiol 79:169. https://doi.org/10.1007/s00284-022-02845-1
Article
CAS
Google Scholar
Rivas R, Garcia-Fraile P, Zurdo-Pineiro JL, Mateos PF, Martinez-Molina E, Bedmar EJ, Sanchez-Raya J, Velazquez E (2008) Saccharibacillus sacchari gen. nov., sp. nov., isolated from sugar cane. Int J Syst Evol Microbiol 58:1850–1854. https://doi.org/10.1099/ijs.0.65499-0
Article
CAS
Google Scholar
Saberi Riseh R, Ebrahimi-Zarandi M, Gholizadeh Vazvani M, Skorik YA (2021) Reducing drought stress in plants by encapsulating plant growth-promoting bacteria with polysaccharides. Int J Mol Sci 22:12979. https://doi.org/10.3390/ijms222312979
Article
CAS
Google Scholar
Saha J, Dey S, Pal A (2022) Whole genome sequencing and comparative genomic analyses of Pseudomonas aeruginosa strain isolated from arable soil reveal novel insights into heavy metal resistance and codon biology. Curr Genet 68:481–503. https://doi.org/10.1007/s00294-022-01245-z
Article
CAS
Google Scholar
Sakakibara H (2006) Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Biol 57:431–449. https://doi.org/10.1146/annurev.arplant.57.032905.105231
Article
CAS
Google Scholar
Salas-Marina MA, Silva-Flores MA, Cervantes-Badillo MG, Rosales-Saavedra MT, Islas-Osuna MA, Casas-Flores S (2011) The plant growth-promoting fungus Aspergillus ustus promotes growth and induces resistance against different lifestyle pathogens in Arabidopsis thaliana. J Microbiol Biotechnol 21:686–696. https://doi.org/10.4014/jmb.1101.01012
Article
Google Scholar
Santoyo G, Moreno-Hagelsieb G, Orozco-Mosqueda Mdel C, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99. https://doi.org/10.1016/j.micres.2015.11.008
Article
CAS
Google Scholar
Sashidhar B, Podile AR (2010) Mineral phosphate solubilization by rhizosphere bacteria and scope for manipulation of the direct oxidation pathway involving glucose dehydrogenase. J Appl Microbiol 109:1–12. https://doi.org/10.1111/j.1365-2672.2009.04654.x
Article
CAS
Google Scholar
Scherlach K, Hertweck C (2021) Mining and unearthing hidden biosynthetic potential. Nat Commun 12:3864. https://doi.org/10.1038/s41467-021-24133-5
Article
CAS
Google Scholar
Shin SH, Lim Y, Lee SE, Yang NW, Rhee JH (2001) CAS agar diffusion assay for the measurement of siderophores in biological fluids. J Microbiol Methods 44:89–95. https://doi.org/10.1016/s0167-7012(00)00229-3
Article
CAS
Google Scholar
Singh S, Gupta G (2015) Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol. https://doi.org/10.4172/1948-5948.1000188
Article
Google Scholar
Singh P, Singh RK, Guo DJ, Sharma A, Singh RN, Li DP, Malviya MK, Song XP, Lakshmanan P, Yang LT, Li YR (2021) Whole genome analysis of sugarcane root-associated endophyte Pseudomonas aeruginosa B18-A plant growth-promoting bacterium with antagonistic potential against Sporisorium scitamineum. Front Microbiol 12:628376. https://doi.org/10.3389/fmicb.2021.628376
Article
Google Scholar
Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448. https://doi.org/10.1111/j.1574-6976.2007.00072.x
Article
CAS
Google Scholar
Subramaniam G, Thakur V, Saxena RK, Vadlamudi S, Purohit S, Kumar V, Rathore A, Chitikineni A, Varshney RK (2020) Complete genome sequence of sixteen plant growth promoting Streptomyces strains. Sci Rep 10:10294. https://doi.org/10.1038/s41598-020-67153-9
Article
CAS
Google Scholar
Sulochana MB, Jayachandra SY, Kumar SA, Parameshwar AB, Reddy KM, Dayanand A (2014) Siderophore as a potential plant growth-promoting agent produced by Pseudomonas aeruginosa JAS-25. Appl Biochem Biotechnol 174:297–308. https://doi.org/10.1007/s12010-014-1039-3
Article
CAS
Google Scholar
Sun JQ, Wang XY, Wang LJ, Xu L, Liu M, Wu XL (2016) Saccharibacillus deserti sp. nov., isolated from desert soil. Int J Syst Evol Microbiol 66:623–627. https://doi.org/10.1099/ijsem.0.000766
Article
CAS
Google Scholar
Swapnil P, Meena M, Singh SK, Dhuldhaj UP, Marwal A (2021) Vital roles of carotenoids in plants and humans to deteriorate stress with its structure, biosynthesis, metabolic engineering and functional aspects. Curr Plant Biol 26:100203. https://doi.org/10.1016/j.cpb.2021.100203
Article
CAS
Google Scholar
Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Smirnov S, Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA (2003) The COG database: an updated version includes eukaryotes. BMC Bioinform 4:41. https://doi.org/10.1186/1471-2105-4-41
Article
Google Scholar
Thiruvengadam R, Gandhi K, Vaithiyanathan S, Sankarasubramanian H, Loganathan K, Lingan R, Rajagopalan VR, Muthurajan R, Ebenezer Iyadurai J, Kuppusami P (2022) Complete genome sequence analysis of Bacillus subtilis Bbv57, a promising biocontrol agent against phytopathogens. Int J Mol Sci 23:9732. https://doi.org/10.3390/ijms23179732
Article
CAS
Google Scholar
Turkina MV, Vikstrom E (2019) Bacteria-host crosstalk: sensing of the quorum in the context of Pseudomonas aeruginosa infections. J Innate Immun 11:263–279. https://doi.org/10.1159/000494069
Article
CAS
Google Scholar
Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq Boyce A (2016) Role of plant growth promoting rhizobacteria in agricultural sustainability—a review. Molecules 21:573. https://doi.org/10.3390/molecules21050573
Article
CAS
Google Scholar
Vurukonda SS, Vardharajula S, Shrivastava M, Sk ZA (2016) Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res 184:13–24. https://doi.org/10.1016/j.micres.2015.12.003
Article
Google Scholar
Wang S, Wang J, Zhou Y, Huang Y, Tang X (2022) Isolation, classification, and growth-promoting effects of Pantoea sp. YSD J2 from the aboveground leaves of Cyperus esculentus L. var. sativus. Curr Microbiol 79:66. https://doi.org/10.1007/s00284-021-02755-8
Article
CAS
Google Scholar
Yang SY, Liu H, Liu R, Zhang KY, Lai R (2009) Saccharibacillus kuerlensis sp. nov., isolated from a desert soil. Int J Syst Evol Microbiol 59:953–957. https://doi.org/10.1099/ijs.0.005199-0
Article
CAS
Google Scholar
Yi HS, Ahn YR, Song GC, Ghim SY, Lee S, Lee G, Ryu CM (2016) Impact of a bacterial volatile 2,3-butanediol on Bacillus subtilis rhizosphere robustness. Front Microbiol 7:993. https://doi.org/10.3389/fmicb.2016.00993
Article
Google Scholar
Yuan H, Zhang J, Nageswaran D, Li L (2015) Carotenoid metabolism and regulation in horticultural crops. Hortic Res 2:15036. https://doi.org/10.1038/hortres.2015.36
Article
CAS
Google Scholar
Zaid DS, Cai S, Hu C, Li Z, Li Y (2022) Comparative genome analysis reveals phylogenetic identity of Bacillus velezensis HNA3 and genomic insights into its plant growth promotion and biocontrol effects. Microbiol Spectr 10:e0216921. https://doi.org/10.1128/spectrum.02169-21
Article
Google Scholar
Zaidi A, Ahmad E, Khan MS, Saif S, Rizvi A (2015) Role of plant growth promoting rhizobacteria in sustainable production of vegetables: current perspective. Sci Hortic 193:231–239. https://doi.org/10.1016/j.scienta.2015.07.020
Article
Google Scholar
Zhao D, Ding Y, Cui Y, Zhang Y, Liu K, Yao L, Han X, Peng Y, Gou J, Du B, Wang C (2022) Isolation and genome sequence of a novel phosphate-solubilizing rhizobacterium Bacillus altitudinis GQYP101 and its effects on rhizosphere microbial community structure and functional traits of corn seedling. Curr Microbiol 79:249. https://doi.org/10.1007/s00284-022-02944-z
Article
CAS
Google Scholar