Allen WD, Czinki E, Császár AG (2004) Molecular structure of proline. Chem Eur J 10(18):4512–4517. https://doi.org/10.1002/chem.200400112
Article
CAS
Google Scholar
Almagro Armenteros JJ, Tsirigos KD, Sonderby CK, Petersen TN, Winther O, Brunak S, von Heijne G, Nielsen H (2019) SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol 37(4):420–423. https://doi.org/10.1038/s41587-019-0036-z
Article
CAS
Google Scholar
Arnold U, Raines RT (2016) Replacing a single atom accelerates the folding of a protein and increases its thermostability. Org Biomol Chem 14(28):6780–6785. https://doi.org/10.1039/c6ob00980h
Article
CAS
Google Scholar
Beldarrain A, Acosta N, Betancourt L, Gonzalez LJ, Pons T (2003) Enzymic, spectroscopic and calorimetric studies of a recombinant dextranase expressed in Pichia pastoris. Biotechnol Appl Biochem 38(Pt 3):211–221. https://doi.org/10.1042/BA20030063
Article
CAS
Google Scholar
Bhavani AL, Nisha J (2010) Dextran-the polysaccharide with versatile uses. Int J Pharm Bio Sci. 1(4):569–573
Google Scholar
Chen L, Yu C, Zhou X, Zhang Y (2009) Rational introduction of disulfide bond to enhance optimal temperature of Lipomyces starkeyi alpha-dextranase expressed in Pichia pastoris. J Microbiol Biotechnol 19(12):1506–1513. https://doi.org/10.4014/jmb.0902.0096
Article
CAS
Google Scholar
Dehouck Y, Kwasigroch JM, Gilis D, Rooman M (2011) PoPMuSiC 2 1: a Web server for the estimation of protein stability changes upon mutation and sequence optimality. BMC Bioinformatics. https://doi.org/10.1186/1471-2105-12-151
Article
Google Scholar
Díaz-Montes E (2021) Dextran: sources, structures, and properties. Polysaccharides 2(3):554–565. https://doi.org/10.3390/polysaccharides2030033
Article
CAS
Google Scholar
Falconer DJ, Mukerjea R, Robyt JF (2011) Biosynthesis of dextrans with different molecular weights by selecting the concentration of Leuconostoc mesenteroides B-512FMC dextransucrase, the sucrose concentration, and the temperature. Carbohydr Res 346(2):280–284. https://doi.org/10.1016/j.carres.2010.10.024
Article
CAS
Google Scholar
Farhat-Khemakhem A, Ali MB, Boukhris I, Khemakhem B, Maguin E, Bejar S, Chouayekh H (2013) Crucial role of Pro 257 in the thermostability of Bacillus phytases: biochemical and structural investigation. Int J Biol Macromol 54:9–15. https://doi.org/10.1016/j.ijbiomac.2012.11.020
Article
CAS
Google Scholar
Gozu Y, Ishizaki Y, Hosoyama Y, Miyazaki T, Nishikawa A, Tonozuka T (2016) A glycoside hydrolase family 31 dextranase with high transglucosylation activity from Flavobacterium johnsoniae. Biosci Biotechnol Biochem 80(8):1562–1567. https://doi.org/10.1080/09168451.2016.1182852
Article
CAS
Google Scholar
Hild E, Brumbley SM, O’Shea MG, Nevalainen H, Bergquist PL (2007) A Paenibacillus sp dextranase mutant pool with improved thermostability and activity. Appl Microbiol Biotechnol 75(5):1071–8. https://doi.org/10.1007/s00253-007-0936-6
Article
CAS
Google Scholar
Hoster F, Daniel R, Gottschalk G (2001) Isolation of a new Thermoanaerobacterium thermosaccharolyticum strain (FH1) producing a thermostable dextranase. J Gen Appl Microbiol 47(4):187–192. https://doi.org/10.2323/jgam.47.187
Article
CAS
Google Scholar
Jiao Y-L, Wang S-J, Lv M-S, Jiao B-H, Li W-J, Fang Y-W, Liu S (2014) Characterization of a marine-derived dextranase and its application to the prevention of dental caries. J Ind Microbiol Biotechnol 41(1):17–26. https://doi.org/10.1007/s10295-013-1369-0
Article
CAS
Google Scholar
Juntarachot N, Sirilun S, Kantachote D, Sittiprapaporn P, Tongpong P, Peerajan S, Chaiyasut C (2020) Anti-Streptococcus mutans and anti-biofilm activities of dextranase and its encapsulation in alginate beads for application in toothpaste. PeerJ. https://doi.org/10.7717/peerj.10165
Article
Google Scholar
Khalikova E, Susi P, Korpela T (2005) Microbial dextran-hydrolyzing enzymes: fundamentals and applications. Microbiol Mol Biol Rev 69(2):306–325. https://doi.org/10.1128/MMBR.69.2.306-325.2005
Article
CAS
Google Scholar
Kim YM, Kim D (2010) Characterization of novel thermostable dextranase from Thermotoga lettingae TMO. Appl Microbiol Biotechnol 85(3):581–587. https://doi.org/10.1007/s00253-009-2121-6
Article
CAS
Google Scholar
Kothari D, Goyal A (2016) Enzyme-resistant isomalto-oligosaccharides produced from Leuconostoc mesenteroides NRRL B-1426 dextran hydrolysis for functional food application. Biotechnol Appl Biochem 63(4):581–589. https://doi.org/10.1002/bab.1391
Article
CAS
Google Scholar
Lai X, Liu X, Liu X, Deng T, Feng Y, Tian X, Lyu M, Wang AS (2019) The marine Catenovulum agarivorans MNH15 and dextranase: removing dental plaque. Mar Drugs. https://doi.org/10.3390/md17100592
Article
Google Scholar
Larsson AM, Andersson R, Ståhlberg J, Kenne L, Jones TA (2003) Dextranase from Penicillium minioluteum. Structure 11(9):1111–1121. https://doi.org/10.1016/s0969-2126(03)00147-3
Article
CAS
Google Scholar
Liu H, Ren W, Ly M, Li H, Wang S (2019) Characterization of an alkaline GH49 dextranase from marine bacterium Arthrobacter oxydans KQ11 and its application in the preparation of isomalto-oligosaccharide. Mar Drugs. https://doi.org/10.3390/md17080479
Article
Google Scholar
Miller G (1959) Use of dinitrosalicyclic acid reagent for determination of reducing sugars. Anal Chem 31:426–428
Article
CAS
Google Scholar
Mizuno M, Tonozuka T, Suzuki S, Uotsu-Tomita R, Kamitori S, Nishikawa A, Sakano Y (2004) Structural insights into substrate specificity and function of glucodextranase. J Biol Chem 279(11):10575–10583. https://doi.org/10.1074/jbc.M310771200
Article
CAS
Google Scholar
Naessens M, Cerdobbel A, Soetaert W, Vandamme EJ (2005) Dextran dextrinase and dextran of Gluconobacter oxydans. J Ind Microbiol Biotechnol 32(8):323–334. https://doi.org/10.1007/s10295-005-0259-5
Article
CAS
Google Scholar
Ó’Fágáin C (2003) Enzyme stabilization-recent experimental progress. Enzyme Microb Technol 33(2–3):137–149. https://doi.org/10.1016/s0141-0229(03)00160-1
Article
Google Scholar
Okazawa Y, Miyazaki T, Yokoi G, Ishizaki Y, Nishikawa A, Tonozuka T (2015) Crystal structure and mutational analysis of isomalto-dextranase, a member of glycoside hydrolase family 27. J Biol Chem 290(43):26339–26349. https://doi.org/10.1074/jbc.M115.680942
Article
CAS
Google Scholar
Otsuka R, Imai S, Murata T, Nomura Y, Okamoto M, Tsumori H, Kakuta E, Hanada N, Momoi Y (2015) Application of chimeric glucanase comprising mutanase and dextranase for prevention of dental biofilm formation. Microbiol Immunol 59(1):28–36. https://doi.org/10.1111/1348-0421.12214
Article
CAS
Google Scholar
Park TS, Jeong HJ, Ko JA, Ryu YB, Park SJ, Kim D, Kim YM, Lee WS (2012) Biochemical characterization of thermophilic dextranase from a thermophilic bacterium. Thermoanaerobacter Pseudethanolicus J Microbiol Biotechnol 22(5):637–641. https://doi.org/10.4014/jmb.1112.12024
Article
CAS
Google Scholar
Pucci F, Kwasigroch JM, Rooman M (2020) Protein thermal stability engineering using HoTMuSiC. Methods Mol Biol 2112:59–73. https://doi.org/10.1007/978-1-0716-0270-6_5
Article
CAS
Google Scholar
Purushe S, Prakash D, Nawani NN, Dhakephalkar P, Kapadnis B (2012) Biocatalytic potential of an alkalophilic and thermophilic dextranase as a remedial measure for dextran removal during sugar manufacture. Bioresour Technol 115:2–7. https://doi.org/10.1016/j.biortech.2012.01.002
Article
CAS
Google Scholar
Radestock S, Gohlke H (2011) Protein rigidity and thermophilic adaptation. Proteins 79(4):1089–1108. https://doi.org/10.1002/prot.22946
Article
CAS
Google Scholar
Ren W, Liu L, Gu L, Yan W, Feng YL, Dong D, Wang S, Lyu M, Wang C (2019) Crystal structure of GH49 dextranase from Arthrobacter oxidans KQ11: identification of catalytic base and improvement of thermostability using semirational design based on B-factors. J Agric Food Chem 67(15):4355–4366. https://doi.org/10.1021/acs.jafc.9b01290
Article
CAS
Google Scholar
Rigoldi F, Donini S, Redaelli A, Parisini E, Gautieri A (2018) Review: engineering of thermostable enzymes for industrial applications. APL Bioeng 2(1):011501. https://doi.org/10.1063/1.4997367
Article
CAS
Google Scholar
Sun Z, Liu Q, Qu G, Feng Y, Reetz MT (2019) Utility of B-factors in protein science: interpreting rigidity, flexibility, and internal motion and engineering thermostability. Chem Rev 119(3):1626–1665. https://doi.org/10.1021/acs.chemrev.8b00290
Article
CAS
Google Scholar
Suzuki N, Kishine N, Fujimoto Z, Sakurai M, Momma M, Ko JA, Nam SH, Kimura A, Kim YM (2016) Crystal structure of thermophilic dextranase from Thermoanaerobacter pseudethanolicus. J Biochem 159(3):331–339. https://doi.org/10.1093/jb/mvv104
Article
CAS
Google Scholar
Thompson MJ, Eisenberg D (1999) Transproteomic evidence of a loop-deletion mechanism for enhancing protein thermostability. J Mol Biol 290(2):595–604. https://doi.org/10.1006/jmbi.1999.2889
Article
CAS
Google Scholar
Trevino SR, Schaefer S, Scholtz JM, Pace CN (2007) Increasing protein conformational stability by optimizing β-turn sequence. J Mol Biol 373(1):211–218. https://doi.org/10.1016/j.jmb.2007.07.061
Article
CAS
Google Scholar
Wang D, Lu M, Wang S, Jiao Y, Li W, Zhu Q, Liu Z (2014a) Purification and characterization of a novel marine Arthrobacter oxydans KQ11 dextranase. Carbohydr Polym 106:71–76. https://doi.org/10.1016/j.carbpol.2014.01.102
Article
CAS
Google Scholar
Wang X, Lu M, Wang S, Fang Y, Wang D, Ren W, Zhao G (2014b) The atmospheric and room-temperature plasma (ARTP) method on the dextranase activity and structure. Int J Biol Macromol 70:284–291. https://doi.org/10.1016/j.ijbiomac.2014.07.006
Article
CAS
Google Scholar
Wynter C, Patel BK, Bain P, de Jersey J, Hamilton S, Inkerman PA (1996) A novel thermostable dextranase from a Thermoanaerobacter species cultured from the geothermal waters of the Great Artesian Basin of Australia. FEMS Microbiol Lett 140(2–3):271–276. https://doi.org/10.1016/0378-1097(96)00193-0
Article
CAS
Google Scholar
Xie Y, An J, Yang G, Wu G, Zhang Y, Cui L, Feng Y (2014) Enhanced enzyme kinetic stability by increasing rigidity within the active site. J Biol Chem 289(11):7994–8006. https://doi.org/10.1074/jbc.M113.536045
Article
CAS
Google Scholar
Xie Z, Zhai L, Meng D, Tian Q, Guan Z, Cai Y, Liao X (2020) Improving the catalytic thermostability of Bacillus altitudinis W3 omega-transaminase by proline substitutions. 3 Biotech 10(7):323. https://doi.org/10.1007/s13205-020-02321-2
Article
CAS
Google Scholar
Xu Z, Cen YK, Zou SP, Xue YP, Zheng YG (2020) Recent advances in the improvement of enzyme thermostability by structure modification. Crit Rev Biotechnol 40(1):83–98. https://doi.org/10.1080/07388551.2019.1682963
Article
CAS
Google Scholar
Xue N, Svensson B, Bai Y (2022) Structure, function and enzymatic synthesis of glucosaccharides assembled mainly by alpha1→6 linkages—A review. Carbohydr Polym. 275:118705. https://doi.org/10.1016/j.carbpol.2021.118705
Article
CAS
Google Scholar
Yang L, Zhou N, Tian Y (2018) Purification, characterization, and biocatalytic potential of a novel dextranase from Chaetomium globosum. Biotechnol Lett 40(9–10):1407–1418. https://doi.org/10.1007/s10529-018-2599-z
Article
CAS
Google Scholar
Yu H, Zhao Y, Guo C, Gan Y (2015) Huang H (2015) The role of proline substitutions within flexible regions on thermostability of luciferase. Biochim Biophys Acta 1:65–72. https://doi.org/10.1016/j.bbapap.2014.10.017
Article
CAS
Google Scholar
Zhang X, Chen F, He C, Fang W, Fang Z, Zhang X, Wang X, Xiao Y (2020) Improving the thermostability of a GH97 dextran glucosidase by rational design. Biotechnol Lett 42(11):2211–2221. https://doi.org/10.1007/s10529-020-02928-8
Article
CAS
Google Scholar