Abarrategi A, Civantos A, Ramos V, Sanz Casado JV, López-Lacomba JL (2007) Chitosan film as rhBMP2 carrier: delivery properties for bone tissue application. Biomacromol 9:711–718. https://doi.org/10.1021/bm701049g
Article
CAS
Google Scholar
Ali Z, Raj B, Vishwas M, Athhar MA (2016) Synthesis, characterization and antimicrobial activity of Ce doped TiO2 nanoparticles. Int J Curr Microbiol Appl Sci 5:705–712. https://doi.org/10.20546/ijcmas.2016.504.081
Article
CAS
Google Scholar
Alves SA, Rossi AL, Ribeiro AR, Toptan F, Pinto AM, Celis JP, Shokuhfar T, Rocha LA (2017) Tribo-electrochemical behavior of bio-functionalized TiO2 nanotubes in artificial saliva: understanding of degradation mechanisms. Wear 384:28–42. https://doi.org/10.1016/j.wear.2017.05.005
Article
CAS
Google Scholar
Ansari MA, Khan HM, Khan AA, Cameotra SS, Saquib Q, Musarrat J (2014) Interaction of Al(2)O(3) nanoparticles with Escherichia coli and their cell envelope biomolecules. J Appl Microbiol 116:772–783. https://doi.org/10.1111/jam.12423
Article
CAS
PubMed
Google Scholar
Anselme K, Davidson P, Popa AM, Giazzon M, Liley M, Ploux L (2010) The interaction of cells and bacteria with surfaces structured at the nanometre scale. Acta Biomater 6:3824–3846. https://doi.org/10.1016/j.actbio.2010.04.001
Article
CAS
PubMed
Google Scholar
Awad NK, Edwards SL, Morsi YS (2017) A review of TiO2 NTs on Ti metal: electrochemical synthesis, functionalization and potential use as bone implants. Mater Sci Eng C 76:1401–1412. https://doi.org/10.1016/j.msec.2017.02.150
Article
CAS
Google Scholar
Azam A, Ahmed AS, Oves M, Khan MS, Habib SS, Memic A (2012) Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. Int J Nanomed 7:6003–6009. https://doi.org/10.2147/IJN.S35347
Article
CAS
Google Scholar
Baek YW, An YJ (2011) Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Sci Total Environ 409:1603–1608. https://doi.org/10.1016/j.scitotenv.2011.01.014
Article
CAS
PubMed
Google Scholar
Bettinger CJ, Langer R, Borenstein JT (2009) Engineering substrate topography at the micro-and nanoscale to control cell function. Angew Chem Int Ed Engl 48(30):5406–5415. https://doi.org/10.1002/anie.200805179
Article
CAS
PubMed
PubMed Central
Google Scholar
Bhadra CM, Truong VK, Pham VT, Al Kobaisi M, Seniutinas G, Wang JY, Juodkazis S, Crawford RJ, Ivanova EP (2015) Antibacterial titanium nano-patterned arrays inspired by dragonfly wings. Sci Rep 5:16817. https://doi.org/10.1038/srep16817
Article
CAS
PubMed
PubMed Central
Google Scholar
Bogdanović U, Lazić V, Vodnik V, Budimir M, Marković Z, Dimitrijević S (2014) Copper nanoparticles with high antimicrobial activity. Mater Lett 128:75–78. https://doi.org/10.1016/j.matlet.2014.04.106
Article
CAS
Google Scholar
Chatterjee AK, Chakraborty R, Basu T (2014) Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology 25:135101. https://doi.org/10.1088/0957-4484/25/13/135101
Article
CAS
PubMed
Google Scholar
Chen X, Cai K, Fang J, Lai M, Li J, Hou Y, Luo Z, Hu Y, Tang L (2013a) Dual action antibacterial TiO2 nanotubes incorporated with silver nanoparticles and coated with a quaternary ammonium salt (QAS). Surf Coat Technol 216:158–165. https://doi.org/10.1016/j.surfcoat.2012.11.049
Article
CAS
Google Scholar
Chen X, Cai K, Fang J, Lai M, Hou Y, Li J, Luo Z, Hu Y, Tang L (2013b) Fabrication of selenium-deposited and chitosan-coated titania nanotubes with anticancer and antibacterial properties. Colloids Surf B Biointerfaces 103:149–157. https://doi.org/10.1016/j.colsurfb.2012.10.022
Article
CAS
PubMed
Google Scholar
Chen Y, Gao A, Bai L, Wang Y, Wang X, Zhang X, Huang X, Hang R, Tang B, Chu P (2017) Antibacterial, osteogenic, and angiogenic activities of SrTiO3 nanotubes embedded with Ag2O nanoparticles. Mater Sci Eng C 75:1049–1058. https://doi.org/10.1016/j.msec.2017.03.014
Article
CAS
Google Scholar
Cheng H, Xiong W, Fang Z, Guan H, Wu W, Li Y, Zhang Y, Alvarez A, Gao B, Huo K, Xu J, Xu N, Zhang C, Fu J, Khademhosseini A, Li F (2016) Strontium (Sr) and silver (Ag) loaded nanotubular structures with combined osteoinductive and antimicrobial activities. Acta Biomater 31:388–400. https://doi.org/10.1016/j.actbio.2015.11.046
Article
CAS
PubMed
Google Scholar
Civantos A, Martínez-Campos E, Ramos V, Elvira C, Gallardo A, Abarrategi A (2017) Titanium coatings and surface modifications: toward clinically useful bioactive implants. ACS Biomater Sci Eng 3:1245–1261. https://doi.org/10.1021/acsbiomaterials.6b00604
Article
CAS
PubMed
Google Scholar
Coelho PG, Takayama T, Yoo D, Jimbo R, Karunagaran S, Tovar N, Janal MN, Yamano S (2014) Nanometer-scale features on micrometer-scale surface texturing: a bone histological, gene expression, and nanomechanical study. Bone 65:25–32. https://doi.org/10.1016/j.bone.2014.05.004
Article
CAS
PubMed
Google Scholar
Cui X, Kim H-M, Kawashita ML, Wang L, Xiong T, Kokubo T, Nakamura T (2009) Preparation of bioactive titania films on titanium metal via anodic oxidation. Dent Mater J 25:80–86. https://doi.org/10.1016/j.dental.2008.04.012
Article
CAS
Google Scholar
Cui Y, Zhao Y, Tian Y, Zhang W, Lü X, Jiang X (2012a) The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials 33:2327–2333. https://doi.org/10.1016/j.biomaterials.2011.11.057
Article
CAS
PubMed
Google Scholar
Cui C, Gao X, Qi Y, Liu S, Sun J (2012b) Microstructure and antibacterial property of in situ TiO2 nanotube layers/titanium biocomposites. J Mech Behav Biomed Mater 8:178–183. https://doi.org/10.1016/j.jmbbm.2012.01.004
Article
CAS
PubMed
Google Scholar
Dakal TC, Kumar A, Majumdar RS, Yadav V (2016) Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol 7:1831. https://doi.org/10.3389/fmicb.2016.01831
Article
PubMed
PubMed Central
Google Scholar
Dhanabalan K, Gurunathan K (2015) Microemulsion mediated synthesis and characterization of CdS nanoparticles and its anti-biofilm efficacy against Escherichia coli ATCC 25922. J Nanosci Nanotechnol 15:4200–4204. https://doi.org/10.1166/jnn.2015.9597
Article
CAS
PubMed
Google Scholar
Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K (2014) Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C 44:278–284. https://doi.org/10.1016/j.msec.2014.08.031
Article
CAS
Google Scholar
Durán N, Durán M, de Jesus MB, Seabra AB, Fávaro WJ, Nakazato G (2016) Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomed Nanotechnol Biol Med 12:789–799. https://doi.org/10.1016/j.nano.2015.11.016
Article
CAS
Google Scholar
Esfandiari N, Simchi A, Bagheri R (2014) Size tuning of Ag-decorated TiO nanotube arrays for improved 2 bactericidal capacity of orthopedic implants. J Biomed Mater Res Part A 102A:2625–2635. https://doi.org/10.1002/jbm.a.34934
Article
CAS
Google Scholar
Esparza-Gonzalez SC, Sanchez-Valdes S, Ramirez-Barron SN, Loera-Arias MJ, Bernal J, Meléndez-Ortiz IH, Betancourt-Galindo R (2016) Effects of different surface modifying agents on the cytotoxic and antimicrobial properties of ZnO nanoparticles. Toxicol In Vitro 37:134–141. https://doi.org/10.1016/j.tiv.2016.09.020
Article
CAS
PubMed
Google Scholar
Fadeeva E, Truong VK, Stiesch M, Chichkov BN, Crawford RJ, Wang J, Ivanova EP (2011) Bacterial retention on superhydrophobic titanium surfaces fabricated by femtosecond laser ablation. Langmuir 27:3012–3019. https://doi.org/10.1021/la104607g
Article
CAS
PubMed
Google Scholar
Feng W, Geng Z, Li Z, Cui Z, Zhu S, Liang Y, Liu Y, Wang R, Yang X (2016) Controlled release behaviour and antibacterial effects of antibiotic-loaded titania nanotubes. Mater Sci Eng C 62:105–112. https://doi.org/10.1016/j.msec.2016.01.046
Article
CAS
Google Scholar
Feris K, Otto C, Tinker J, Wingett D, Punnoose A, Thurber A, Kongara M, Sabetian M, Quinn B, Hanna C, Pink D (2010) Electrostatic interactions affect nanoparticle-mediated toxicity to gram-negative bacterium Pseudomonas aeruginosa PAO1. Langmuir 26:4429–4436. https://doi.org/10.1021/la903491z
Article
CAS
PubMed
Google Scholar
Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, Galdiero M (2015) Silver nanoparticles as potential antibacterial agents. Molecules 20:8856–8874. https://doi.org/10.3390/molecules20058856
Article
CAS
PubMed
PubMed Central
Google Scholar
Gajjar P, Pettee B, Britt D, Huang W, Johnson W, Anderson A (2009) Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440. J Biol Eng 3:9. https://doi.org/10.1186/1754-1611-3-9
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao A, Hang R, Huang X, Zhao L, Zhang X, Wang L, Tang B, Ma S, Chu PK (2014) The effects of titania nanotubes with embedded silver oxide nanoparticles on bacteria and osteoblasts. Biomaterials 35:4223–4235. https://doi.org/10.1016/j.biomaterials.2014.01.058
Article
CAS
PubMed
Google Scholar
Gittens RA, Scheideler L, Rupp F, Hyzy SL, Geis-Gerstorfer J, Schwartz Z, Boyan BD (2014) A review on the wettability of dental implant surfaces II: biological and clinical aspects. Acta Biomater 10:2907–2918. https://doi.org/10.1016/j.actbio.2014.03.032
Article
CAS
PubMed
PubMed Central
Google Scholar
Goodman SB, Yao Z, Keeney M, Yang F (2013) The future of biologic coatings for orthopaedic implants. Biomaterials 34(13):3174–3183. https://doi.org/10.1016/j.biomaterials.2013.01.074
Article
CAS
PubMed
PubMed Central
Google Scholar
Guisbiers G, Wang Q, Khachatryan E, Mimun LC, Mendoza-Cruz R, Larese-Casanova P, Webster TJ, Nash KL (2016) Inhibition of E. coli and S. aureus with selenium nanoparticles synthesized by pulsed laser ablation in deionized water. Int J Nanomed 11:3731–3736. https://doi.org/10.2147/IJN.S106289
Article
CAS
Google Scholar
Gulati K, Ramakrishnan S, Aw MS, Atkins GJ, Findlay DM, Losic D (2012) Biocompatible polymer coating of titania nanotube arrays for improved drug elution and osteoblast adhesion. Acta Biomater 8:449–456. https://doi.org/10.1016/j.actbio.2011.09.004
Article
CAS
PubMed
Google Scholar
Hajipour M, Fromm K, Ashkarran A, de Aberasturi D, de Larramendi I, Rojo T, Serpooshan V, Parak W, Mahmoud M (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30:499–511. https://doi.org/10.1016/j.tibtech.2012.06.004
Article
CAS
PubMed
Google Scholar
Hasan J, Crawford RJ, Ivanova EP (2013) Antibacterial surfaces: the quest for a new generation of biomaterials. Trends Biotechnol 31(5):295–304. https://doi.org/10.1016/j.tibtech.2013.01.017
Article
CAS
PubMed
Google Scholar
Hemeg HA (2017) Nanomaterials for alternative antibacterial therapy. Int J Nanomed 12:8211–8225. https://doi.org/10.2147/IJN.S132163
Article
CAS
Google Scholar
Hernandez-Delgadillo R, Velasco-Arias D, Diaz D, Arevalo-Niño K, Gazrza-Enriquez M, De la Garza-Ramos MA, Cabral-Ramos C (2012) Zerovalent bismuth nanoparticles inhibit Streptococcus mutans growth and formation of biofilm. Int J Nanomed 7:2109–2113. https://doi.org/10.2147/IJN.S29854
Article
CAS
Google Scholar
Huang Q, Yang Y, Zheng D, Song R, Zhang Y, Jiang P, Vogler EA, Lin C (2017) Effect of construction of TiO2 nanotubes on platelet behaviors: structure–property relationships. Acta Biomater 51:505–512. https://doi.org/10.1016/j.actbio.2017.01.044
Article
CAS
PubMed
Google Scholar
Huo S, Jiang Y, Gupta A, Jiang Z, Landis RF, Hou S, Liang XJ, Rotello VM (2016) Fully zwitterionic nanoparticle antimicrobial agents through tuning of core size and ligand structure. ACS Nano 10:8732–8737. https://doi.org/10.1021/acsnano.6b04207
Article
CAS
PubMed
PubMed Central
Google Scholar
Ionita D, Bajenaru-Georgescu D, Totea G, Anca Mazare Schmuki P, Demetrescu I (2017) Activity of vancomycin release from bioinspired coatings of hydroxyapatite or TiO nanotube. Int J Pharm 517:296–302. https://doi.org/10.1016/j.ijpharm.2016.11.062
Article
CAS
PubMed
Google Scholar
Jaggessar A, Shahali H, Mathew A, Yarlagadda PK (2017) Bio-mimicking nano and micro-structured surface fabrication for antibacterial properties in medical implants. J Nanobiotechnol 15(1):64. https://doi.org/10.1186/s12951-017-0306-1
Article
CAS
Google Scholar
Jennings JA, Wells CM, McGraw GS, Velasquez Pulgarin DA, Whitaker MD, Pruitt RL, Bumgardner JD (2015) Chitosan coatings to control release and target tissues for therapeutic delivery. Ther Deliv 6(7):855–871. https://doi.org/10.4155/tde.15.31
Article
CAS
PubMed
Google Scholar
Jiang W, Mashayekhi H, Xing B (2009) Bacterial toxicity comparison between nano- and micro-scaled oxide particles. Environ Pollut 157:1619–1625. https://doi.org/10.1016/j.envpol.2008.12.025
Article
CAS
PubMed
Google Scholar
Kannan S, Sundrarajan M (2015) Biosynthesis of Yttrium oxide nanoparticles using Acalypha indica leaf extract. Bull Mater Sci 38:945–950. https://doi.org/10.1007/s12034-015-0927-7
Article
CAS
Google Scholar
Kazemzadeh-Narbat M, Lai BF, Ding C, Kizhakkedathu JN, Hancock RE, Wang R (2013) Multilayered coating on titanium for controlled release of antimicrobial peptides for the prevention of implant-associated infections. Biomaterials 34:5969–5977. https://doi.org/10.1016/j.biomaterials.2013.04.036
Article
CAS
PubMed
Google Scholar
Khashan KS, Sulaiman GM, Abdul Ameer FA, Napolitano G (2016) Synthesis, characterization and antibacterial activity of colloidal NiO nanoparticles. Pak J Pharm Sci 29:541–546
CAS
PubMed
Google Scholar
Kim SW, An YJ (2012) Effect of ZnO and TiO2 nanoparticles preilluminated with UVA and UVB light on Escherichia coli and Bacillus subtilis. Appl Microbiol Biotechnol 95(1):243–253. https://doi.org/10.1007/s00253-012-4153-6
Article
CAS
PubMed
Google Scholar
Kumar A, Pandey A, Singh S, Shanker R, Dhawan A (2011a) Engineered ZnO and TiO nanoparticles induce oxidative stress and DNA damage 2 leading to reduced viability of Escherichia coli. Free Radic Biol Med 51:1872–1881. https://doi.org/10.1016/j.freeradbiomed.2011.08.025
Article
CAS
PubMed
Google Scholar
Kumar A, Pandey A, Singh S, Shanker R, Dhawan A (2011b) Cellular uptake and mutagenic potential of metal oxide nanoparticles in bacterial cells. Chemosphere 83:1124–1132. https://doi.org/10.1016/j.chemosphere.2011.01.025
Article
CAS
PubMed
Google Scholar
Kumar A, Alam A, Rani M, Ehtesham NZ, Hasnain SE (2017) Biofilms: survival and defense strategy for pathogens. Int J Med Microbiol 303:481–489. https://doi.org/10.1016/j.ijmm.2017.09.016
Article
CAS
Google Scholar
Kumeria T, Mon H, Aw MS, Gulati K, Santos A, Griesser HJ, Losic D (2015) Advanced biopolymer-coated drug-releasing titania nanotubes (TNTs) implants with simultaneously enhanced osteoblast adhesion and antibacterial properties. Colloids Surf B Biointerfaces 130:255–263. https://doi.org/10.1016/j.colsurfb.2015.04.021
Article
CAS
PubMed
Google Scholar
Kunrath MF, Hubler R (2018) A bone preservation protocol that enables evaluation of osseointegration of implants with micro- and nanotextured surfaces. Biotech Histochem. https://doi.org/10.1080/10520295.2018.1552017
Article
PubMed
Google Scholar
Kunrath MF, Hubler R, Shinkai RS, Teixeira ER (2018) Application of TiO2 nanotubes as a drug delivery system for biomedical implants: a critical overview. ChemistrySelect 3(40):11180–11189. https://doi.org/10.1002/slct.201801459
Article
CAS
Google Scholar
Lai Y, Huang J, Cui Z, Ge M, Zhang KQ, Chen Z, Chi L (2016) Recent advances in TiO2-based nanostructured surfaces with controllable wettability and adhesion. Small 12(16):2203–2224. https://doi.org/10.1002/smll.201501837
Article
CAS
PubMed
Google Scholar
Lai M, Jin Z, Yang X, Wang H, Xu K (2017) The controlled release of simvastatin from TiO2 nanotubes to promote osteoblast differentiation and inhibit osteoclast resorption. Appl Surf Sci 396:1741–1751. https://doi.org/10.1016/j.apsusc.2016.11.228
Article
CAS
Google Scholar
Lee D, Seo Y, Khan M, Hwang J, Jo Y, Son J, Lee K, Park C, Chavan S, Gilad A, Choi J (2018) Use of nanoscale materials for the effective prevention and extermination of bacterial biofilms. Biotechnol Bioprocess Eng 23:1–10. https://doi.org/10.1007/s12257-017-0348-0
Article
CAS
Google Scholar
Lellouche J, Friedman A, Lahmi R, Gedanken A, Banin E (2012a) Antibiofilm surface functionalization of catheters by magnesium fluoride nanoparticles. Int J Nanomed 7:1175–1188. https://doi.org/10.2147/IJN.S26770
Article
CAS
Google Scholar
Lellouche J, Friedman A, Gedanken A, Banin E (2012b) Antibacterial and antibiofilm properties of yttrium fluoride nanoparticles. Int J Nanomed 7:5611–5624. https://doi.org/10.2147/IJN.S37075
Article
CAS
Google Scholar
Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4(1):26–49. https://doi.org/10.1002/smll.200700595
Article
CAS
PubMed
Google Scholar
Li J, Zhou H, Qian S, Liu Z, Feng J, Jin P, Liu X (2014) Plasmonic gold nanoparticles modified titania nanotubes for antibacterial application. Appl Phys Lett 104:261110. https://doi.org/10.1063/1.4885401
Article
CAS
Google Scholar
Li B, Hao J, Min Y, Xin S, Guo L, He F, Liang C, Wang H, Li H (2015) Biological properties of nanostructured Ti incorporated with Ca, P and Ag by electrochemical method. Mater Sci Eng C 51:80–86. https://doi.org/10.1016/j.msec.2015.02.036
Article
CAS
Google Scholar
Li T, Wang N, Chen S, Lu R, Li H, Zhang Z (2017) Antibacterial activity and cytocompatibility of an implant coating consisting of TiO2 nanotubes combined with a GL13K antimicrobial peptide. Int J Nanomed 12:2995–3007. https://doi.org/10.2147/IJN.S128775
Article
CAS
Google Scholar
Liu X, Chu PK, Ding C (2004) Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng R Rep 47(3–4):49–121. https://doi.org/10.1016/j.mser.2004.11.001
Article
CAS
Google Scholar
Liu JH, Wu GL, Yu M, Wu L, Zhang Y, Li SM (2012) Influence of incremental rate of anodising current on roughness and electrochemical corrosion of oxide film on titanium alloy Ti–10V–2Fe–3Al. Surf Eng 28(6):406–411. https://doi.org/10.1179/1743294411Y.0000000091
Article
CAS
Google Scholar
Liu W, Golshan NH, Deng X, Hickey DJ, Zeimer K, Li H, Webster TJ (2016) Selenium nanoparticles incorporated into titania nanotubes inhibit bacterial growth and macrophage proliferation. Nanoscale 8(34):15783–15794. https://doi.org/10.1039/C6NR04461A
Article
CAS
PubMed
Google Scholar
Lotz EM, Berger MB, Schwartz Z, Boyan BD (2018) Regulation of osteoclasts by osteoblast lineage cells depends on titanium implant surface properties. Acta Biomater 68:296–307. https://doi.org/10.1016/j.actbio.2017.12.039
Article
CAS
PubMed
Google Scholar
Lyndon JA, Boyd BJ, Birbilis N (2014) Metallic implant drug/device combinations for controlled drug release in orthopaedic applications. J Control Release 179:63–75. https://doi.org/10.1016/j.jconrel.2014.01.026
Article
CAS
PubMed
Google Scholar
Ma M, Kazemzadeh-Narbat M, Hui Y, Lu S, Ding C, Chen DDY, Hancock REW, Wang R (2012) Local delivery of antimicrobial peptides using self-organized TiO2 nanotube arrays for peri-implant infections. J Biomed Mater Res Part A 100A:278–285. https://doi.org/10.1002/jbm.a.33251
Article
CAS
Google Scholar
Mei S, Wang H, Wang W, Tong L, Pan H, Ruan C, Ma Q, Liu M, Yang H, Zhang L, Cheng Y, Zhang Y, Zhao L, Chu PK (2014) Antibacterial effects and biocompatibility of titanium surfaces with graded silver incorporation in titania nanotubes. Biomaterials 35:4255–4265. https://doi.org/10.1016/j.biomaterials.2014.02.005
Article
CAS
PubMed
Google Scholar
Miao X, Wang D, Xu L, Wang J, Zeng D, Lin S, Huang C, Liu X, Jiang X (2017) The response of human osteoblasts, epithelial cells, fibroblasts, macrophages and oral bacteria to nanostructured titanium surfaces: a systematic study. Int J Nanomed 12:1415–1430. https://doi.org/10.2147/IJN.S126760
Article
CAS
Google Scholar
Minagar S, Berndt CC, Wang J, Ivanova E, Wen C (2012) A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces. Acta Biomater 8:2875–2888. https://doi.org/10.1016/j.actbio.2012.04.005
Article
CAS
PubMed
Google Scholar
Morones J, Elechiguerra J, Camacho A, Holt K, Kouri J, Ramírez J, Yacaman M (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353. https://doi.org/10.1088/0957-4484/16/10/059
Article
CAS
PubMed
Google Scholar
Nemati S, Hadjizadeh A (2017) Gentamicin-eluting titanium dioxide nanotubes grown on the ultrafine-grained titanium. AAPS Pharm Sci Tech 18:2180–2187. https://doi.org/10.1208/s12249-016-0679-8
Article
CAS
Google Scholar
Neoh KG, Hu X, Zheng D, Kang ET (2012) Balancing osteoblast functions and bacterial adhesion on functionalized titanium surfaces. Biomaterials 33:2813–2822. https://doi.org/10.1016/j.biomaterials.2012.01.018
Article
CAS
PubMed
Google Scholar
Nour El Din S, El-Tayeb TA, Abou-Aisha K, El-Azizi M (2016) In vitro and in vivo antimicrobial activity of combined therapy of silver nanoparticles and visible blue light against Pseudomonas aeruginosa. Int J Nanomed 11:1749–1758. https://doi.org/10.2147/IJN.S102398
Article
CAS
Google Scholar
Oktar FN, Yetmez M, Ficai D, Ficai A, Dumitru F, Pica A (2015) Molecular mechanism and targets of the antimicrobial activity of metal nanoparticles. Curr Top Med Chem 15(16):1583–1588
Article
CAS
PubMed
Google Scholar
Oliveira WF, Arruda IR, Silva GMM, Machado G, Coelho LCBB, Correia MTS (2017) Functionalization of titanium dioxide nanotubes with biomolecules for biomedical applications. Mater Sci Eng C 81:597–606. https://doi.org/10.1016/j.msec.2017.08.017
Article
CAS
Google Scholar
Penha N, Groisman S, Ng J, Gonçalves OD, Kunrath MF (2018) Physical-chemical analyses of contaminations and internal holes in dental implants of pure commercial titanium. J Osseointegration 10(2):57–63. https://doi.org/10.23805/jo.2018.10.02.05
Article
Google Scholar
Piszczek P, Lewandowska Z, Radtke A, Jedrzejewski T, Kozak W, Sadowska B, Szubka M, Talik E, Fiori F (2017) Biocompatibility of titania nanotube coatings enriched with silver nanograins by chemical vapor deposition. Nanomaterials 7:274. https://doi.org/10.3390/nano7090274
Article
CAS
PubMed Central
Google Scholar
Popat KC, Eltgroth M, LaTempa TJ, Grimes CA, Desai TA (2007) Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. Biomaterials 28:4880–4888. https://doi.org/10.1016/j.biomaterials.2007.07.037
Article
CAS
PubMed
Google Scholar
Rai M, Deshmukh S, Ingle A, Gade A (2012) Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J Appl Microbiol 112:1364–5072. https://doi.org/10.1111/j.1365-2672.2012.05253.x
Article
CAS
Google Scholar
Ramyadevi J, Jeyasubramanian K, Marikani A, Rajakumar G, Rahuman A (2012) Synthesis and antimicrobial activity of copper nanoparticles. Mater Lett 71:114–116. https://doi.org/10.1016/j.matlet.2011.12.055
Article
CAS
Google Scholar
Raphel J, Holodniy M, Goodman SB, Heilshorn SC (2016) Multifunctional coatings to simultaneously promote osseointegration and prevent infection of orthopaedic implants. Biomaterials 84:301–314. https://doi.org/10.1016/j.biomaterials.2016.01.016
Article
CAS
PubMed
PubMed Central
Google Scholar
Roguska A, Belzarz A, Zalewska J, Holdynski M, Andrzejczuk M, Pizarek M, Ginalska G (2018) Metal TiO2 nanotube layers for the treatment of dental implant infections. ACS Appl Mater Interfaces 10(20):17089–17099. https://doi.org/10.1021/acsami.8b04045
Article
CAS
PubMed
Google Scholar
Rosenbaum J, Versace DL, Abbad-Andallousi S, Pires R, Azevedo C, Cénédese P, Dubot P (2017) Antibacterial properties of nanostructured Cu–TiO2 surfaces for dental implants. Biomater Sci 5:455–462. https://doi.org/10.1039/c6bm00868b
Article
CAS
PubMed
Google Scholar
Ruparelia J, Chatterjee A, Duttagupta S, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4:707–716. https://doi.org/10.1016/j.actbio.2007.11.006
Article
CAS
PubMed
Google Scholar
Seil J, Webster T (2012) Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomed 7:2767–2781. https://doi.org/10.2147/IJN.S24805
Article
CAS
Google Scholar
Shamaila S, Zafar N, Riaz S, Sharif R, Nazir J, Naseem S (2016) Gold nanoparticles: an efficient antimicrobial agent against enteric bacterial human pathogen. Nanomaterials 6:71. https://doi.org/10.3390/nano6040071
Article
CAS
PubMed Central
Google Scholar
Simon-Deckers A, Loo S, Mayne L'hermite M, Herlin-Boime N, Menguy N, Reynaud C, Gouget B, Carriere M (2009) Size-, composition- and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria. Environ Sci Technol 43(21):8423–8429. https://doi.org/10.1021/es9016975
Article
CAS
PubMed
Google Scholar
Sinha R, Karan R, Sinha A, Khare S (2011) Interaction and nanotoxic effect of ZnO and Ag nanoparticles on mesophilic and halophilic bacterial cells. Bioresour Technol 102:1516–1520. https://doi.org/10.1016/j.biortech.2010.07.117
Article
CAS
PubMed
Google Scholar
Sirelkhatim A, Mahmud S, Seeni A, Kaus N, Ann L, Bakhori S, Hasan H, Mohamad D (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nanomicro Lett 7:219–242. https://doi.org/10.1007/s40820-015-0040-x
Article
CAS
PubMed
Google Scholar
Sridhar S, Wilson TG Jr, Palmer KL, Valderrama P, Mathew MT, Prasad S, Jacobs M, Gindri IM, Rodrigues DC (2015) In vitro investigation of the effect of oral bacteria in the surface oxidation of dental implants. Clin Implant Dent Relat Res 17:e562–e575. https://doi.org/10.1111/cid.12285
Article
PubMed
Google Scholar
Taylor EN, Webster TJ (2009) The use of superparamagnetic nanoparticles for prosthetic biofilm prevention. Int J Nanomedicine 4:145–152
Article
CAS
PubMed
PubMed Central
Google Scholar
Truong VK, Pham VT, Medvedev A, Lapovok R, Estrin Y, Lowe TC, Baulin V, Boshkovikj V, Fluke CJ, Crawford RJ, Ivanova EP (2015) Self-organised nanoarchitecture of titanium surfaces influences the attachment of Staphylococcus aureus and Pseudomonas aeruginosa bacteria. Appl microbiol biotech 99(16):6831–6840. https://doi.org/10.1007/s00253-015-6572-7
Article
CAS
Google Scholar
Tsuang Y-H, Sun J-S, Huang Y-C, Lu C-H, Chang W, Wang C-C (2008) Studies of photokilling of bacteria using titanium dioxide nanoparticles. Artif Organs 32:167–174. https://doi.org/10.1111/j.1525-1594.2007.00530.x
Article
CAS
PubMed
Google Scholar
Uhm S-H, Song D-H, Kwon J-S, Lee S-B, Han J-G, Kim K-N (2014) Tailoring of antibacterial Ag nano-structures on TiO2 nanotube layers by magnetron sputtering. J Biomed Mater Res Part B 102B:592–603. https://doi.org/10.1002/jbm.b.33038
Article
CAS
Google Scholar
Vasilev K, Poh Z, Kant K, Chan J, Michelmore A, Losic D (2010) Tailoring the surface functionalities of titania nanotube arrays. Biomaterials 31:532–540. https://doi.org/10.1016/j.biomaterials.2009.09.074
Article
CAS
PubMed
Google Scholar
Wang G, Feng H, Gao A, Hao Q, Jin W, Peng X, Li W, Wu G, Chu PK (2016) Extracellular electron transfer from aerobic bacteria to Au-loaded TiO2 semiconductor without light: a new bacteria-killing mechanism other than localized surface plasmon resonance or microbial fuel cells. ACS Appl Mater Interfaces 8:24509–24516. https://doi.org/10.1021/acsami.6b10052
Article
CAS
PubMed
Google Scholar
Wang T, Liu X, Zhu Y, Cui ZD, Yang XJ, Pan H, Yeung KWK, Wu S (2017a) Metal ion coordination polymer-capped pH-triggered drug release system on titania nanotubes for enhancing self-antibacterial capability of Ti implants. ACS Biomater Sci Eng 3:816–825. https://doi.org/10.1021/acsbiomaterials.7b00103
Article
CAS
PubMed
Google Scholar
Wang Q, Huang JY, Li HQ, Zhao AZJ, Wang Y, Zhang KQ, Sun HT, Lai YK (2017b) Recent advances on smart TiO2 nanotube platforms for sustainable drug delivery applications. Int J Nanomed 12:151. https://doi.org/10.2147/IJN.S117498
Article
CAS
Google Scholar
Wang G, Feng H, Jin W, Gao A, Peng X, Li W, Wu H, Li Z, Chu PK (2017c) Long-term antibacterial characteristics and cytocompatibility of titania nanotubes loaded with Au nanoparticles without photocatalytic effects. Appl Surf Sci 414:230–237. https://doi.org/10.1016/j.apsusc.2017.04.053
Article
CAS
Google Scholar
Wang G, Feng H, Hu L, Jin W, Hao Q, Gao A, Peng X, Li W, Wong K-Y, Wang H, Li Z, Chu PK (2018) An antibacterial platform based on capacitive carbon-doped TiO2 nanotubes after direct or alternating current charging. Nat Commun 9(1):2055. https://doi.org/10.1038/s41467-018-04317-2
Article
CAS
PubMed
PubMed Central
Google Scholar
Widaa A, Claro T, Foster TJ, O’Brien FJ, Kerrigan SW (2012) Staphylococcus aureus protein A plays a critical role in mediating bone destruction and bone loss in osteomyelitis. PLoS ONE 7:e40586. https://doi.org/10.1371/journal.pone.0040586
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu LC, Siedlecki CA (2014) Staphylococcus epidermidis adhesion on hydrophobic and hydrophilic textured biomaterial surfaces. Biomed Mater 9(3):035003
Article
PubMed
Google Scholar
Yang T, Qian S, Qiao Y, Liu X (2016) Cytocompatibility and antibacterial activity of titania nanotubes incorporated with gold nanoparticles. Colloids Surf B Biointerfaces 145:597–606. https://doi.org/10.1016/j.colsurfb.2016.05.073
Article
CAS
PubMed
Google Scholar
Yao C, Webster TJ (2009) Prolonged antibiotic delivery from anodized nanotubular titanium using a co-precipitation drug loading method. J Biomed Mater Res B Appl Biomater 91:587–595. https://doi.org/10.1002/jbm.b.31433
Article
CAS
PubMed
Google Scholar
Yao S, Feng X, Lu J, Zheng Y, Wang X, Volinsky A, Wang L-N (2018) Antibacterial activity and inflammation inhibition of ZnO nanoparticles embedded TiO2 nanotubes. Nanotechnology 29:244003. https://doi.org/10.1088/1361-6528/aabac1
Article
CAS
PubMed
Google Scholar
Yim EK, Darling EM, Kulangara K, Guilak F, Leong KW (2010) Nanotopography-induced changes in focal adhesions, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells. Biomaterials 31(6):1299–1306. https://doi.org/10.1016/j.biomaterials.2009.10.037
Article
CAS
PubMed
Google Scholar
Yoon KY, Byeon JH, Park J-H, Hwang J (2007) Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ 373:572–575. https://doi.org/10.1016/j.scitotenv.2006.11.007
Article
CAS
PubMed
Google Scholar
Yu Y, Shen X, Luo Z, Hu Y, Li M, Ma P, Ran Q, Dai L, He Y, Cai K (2018) Osteogenesis potential of different titania nanotubes in oxidative stress microenvironment. Biomaterials 167:44–57. https://doi.org/10.1016/j.biomaterials.2018.03.024
Article
CAS
PubMed
Google Scholar
Yue C, van der Mei HC, Kuijer R, Busscher HJ, Rochford ET (2015) Mechanism of cell integration on biomaterial implant surfaces in the presence of bacterial contamination. J Biomed Mater Res Part A 103(11):3590–3598. https://doi.org/10.1002/jbm.a.35502
Article
CAS
Google Scholar
Zhang G, Zhang J, Xie G, Liu Z, Shao H (2006) Cicada wings: a stamp from nature for nanoimprint lithography. Small 2:1440–1443. https://doi.org/10.1002/smll.200600255
Article
CAS
PubMed
Google Scholar
Zhang H, Sun Y, Tian A, Xue XX, Wang L, Alquhali A, Bai X (2013) Improved antibacterial activity and biocompatibility on vancomycin-loaded TiO2 nanotubes: in vivo and in vitro studies. Int J Nanomed 8:4379. https://doi.org/10.2147/IJN.S53221
Article
CAS
Google Scholar
Zhang Y, Zhang L, Li B, Han Y (2017) Enhancement in sustained release of antimicrobial peptide from dual-diameter-structured TiO2 nanotubes for long-lasting antibacterial activity and cytocompatibility. ACS Appl Mater Interfaces 9:9449–9461. https://doi.org/10.1021/acsami.7b00322
Article
CAS
PubMed
Google Scholar
Zhao L, Wang H, Huo K, Cui L, Zhang W, Ni H, Zhang Y, Wu Z, Chu PK (2011) Antibacterial nano-structured titania coating incorporated with silver nanoparticles. Biomaterials 32:5706–5716. https://doi.org/10.1016/j.biomaterials.2011.04.040
Article
CAS
PubMed
Google Scholar
Zhukova Y, Hiepen C, Knaus P, Osterland M, Prohaska S, Dunlop JW, Fratzl P, Skorb EV (2017) The role of titanium surface nanostructuring on preosteoblast morphology, adhesion, and migration. Adv Healthc Mater 6(15):1601244. https://doi.org/10.1002/adhm.201601244
Article
CAS
Google Scholar