Aghaie A, Lechaplais C, Sirven P, Tricot S, Besnard-Gonnet M, Muselet D, De Berardinis V, Kreimeyer A, Gyapay G, Salanoubat M, Perret A (2008) New insights into the alternative d-glucarate degradation pathway. J Biol Chem 283:15638–15646. https://doi.org/10.1074/jbc.M800487200
Article
CAS
PubMed
PubMed Central
Google Scholar
Agius F, González-Lamothe R, Caballero JL, Muñoz-Blanco J, Botella MA, Valpuesta V (2003) Engineering increased vitamin C levels in plants by overexpression of a d-galacturonic acid reductase. Nat Biotechnol 21:177–181. https://doi.org/10.1038/nbt777
Article
CAS
Google Scholar
Alazi E, Niu J, Kowalczyk JE, Peng M, Aguilar Pontes MV, van Kan JAL, Visser J, de Vries RP, Ram AFJ (2016) The transcriptional activator GaaR of Aspergillus niger is required for release and utilization of d-galacturonic acid from pectin. FEBS Lett 590:1804–1815
Article
CAS
Google Scholar
Alazi E, Khosravi C, Homan TG, du Pré S, Arentshorst M, Di Falco M, Pham TTM, Peng M, Aguilar-Pontes MV, Visser J, Tsang A, de Vries RP, Ram AFJ (2017) The pathway intermediate 2-keto-3-deoxy-l-galactonate mediates the induction of genes involved in d-galacturonic acid utilization in Aspergillus niger. FEBS Lett 591:1408–1418. https://doi.org/10.1002/1873-3468.12654
Article
CAS
PubMed
PubMed Central
Google Scholar
Andberg M, Maaheimo H, Boer H, Penttilä M, Koivula A, Richard P (2012) Characterization of a novel Agrobacterium tumefaciens galactarolactone cycloisomerase enzyme for direct conversion of d-galactarolactone to 3-deoxy-2-keto-l-threo-hexarate. J Biol Chem. https://doi.org/10.1074/jbc.m111.335240
Article
PubMed
PubMed Central
Google Scholar
Anonymus (1922) Commercial production of mucic acid. Chem Metall Eng 26:1118
Google Scholar
Barth D, Wiebe MG (2017) Enhancing fungal production of galactaric acid. Appl Microbiol Biotechnol 101:4033–4040. https://doi.org/10.1007/s00253-017-8159-y
Article
CAS
PubMed
Google Scholar
Benz JP, Protzko RJ, Andrich JM, Bauer S, Dueber JE, Somerville CR (2014) Identification and characterization of a galacturonic acid transporter from Neurospora crassa and its application for Saccharomyces cerevisiae fermentation processes. Biotechnol Biofuels 7:20. https://doi.org/10.1186/1754-6834-7-20
Article
CAS
PubMed
PubMed Central
Google Scholar
Biz A, Sugai-Guérios MH, Kuivanen J, Maaheimo H, Krieger N, Mitchell DA, Richard P (2016) The introduction of the fungal d-galacturonate pathway enables the consumption of d-galacturonic acid by Saccharomyces cerevisiae. Microb Cell Fact 15:144. https://doi.org/10.1186/s12934-016-0544-1
Article
CAS
PubMed
PubMed Central
Google Scholar
Boer H, Maaheimo H, Koivula A, Penttilä M, Richard P (2010) Identification in Agrobacterium tumefaciens of the d-galacturonic acid dehydrogenase gene. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-009-2333-9
Article
PubMed
Google Scholar
Bouvier JT, Groninger-Poe FP, Vetting M, Almo SC, Gerlt JA (2014) Galactaro δ-lactone isomerase: lactone isomerization by a member of the amidohydrolase superfamily. Biochemistry 53:614–616. https://doi.org/10.1021/bi5000492
Article
CAS
PubMed
PubMed Central
Google Scholar
Bouvier JT, Sernova NV, Ghasempur S, Rodionova IA, Vetting MW, Al-Obaidi NF, Almo SC, Gerlt JA, Rodionov DA (2018) Novel metabolic pathways and regulons for hexuronate utilization in proteobacteria. J Bacteriol. https://doi.org/10.1128/jb.00431-18
Article
PubMed
Google Scholar
Chang YF, Feingold DS (1970) d-glucaric acid and galactaric acid catabolism by Agrobacterium tumefaciens. J Bacteriol 102:85–96
CAS
PubMed
PubMed Central
Google Scholar
Colquhoun IJ, Ralet M, Thibault J, Faulds CB, Williamson G (1994) Structure identification of feruloylated oligosaccharides from sugar-beet pulp by NMR spectroscopy. Carbohydr Res 263:243–256
Article
CAS
Google Scholar
Condemine G, Robert-Baudouy J (1991) Analysis of an Erwinia chrysanthemi gene cluster involved in pectin degradation. Mol Microbiol 5:2191–2202. https://doi.org/10.1111/j.1365-2958.1991.tb02149.x
Article
CAS
PubMed
Google Scholar
Csiba M, Cleophax J, Petit S, Gero S (1993) An expedient and practical three-step synthesis of vitamin C from a byproduct of the sugar industry: the l-galactono-1, 4-lactone pathway. J Org Chem 58:7281–7282
Article
CAS
Google Scholar
Culleton H, Mckie V, De Vries RP (2013) Physiological and molecular aspects of degradation of plant polysaccharides by fungi: what have we learned from Aspergillus? Biotechnol J 8:884–894. https://doi.org/10.1002/biot.201200382
Article
CAS
PubMed
Google Scholar
de Vries RP, Visser J (2001) Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol Mol Biol Rev 65:497–522. https://doi.org/10.1128/MMBR.65.4.497
Article
PubMed
PubMed Central
Google Scholar
de Vries RP, Jansen J, Aguilar G, Pařenicová L, Joosten V, Wülfert F, Benen JAE, Visser J (2002) Expression profiling of pectinolytic genes from Aspergillus niger. FEBS Lett 530:41–47. https://doi.org/10.1016/S0014-5793(02)03391-4
Article
PubMed
Google Scholar
Edwards MC, Doran-Peterson J (2012) Pectin-rich biomass as feedstock for fuel ethanol production. Appl Microbiol Biotechnol 95:565–575. https://doi.org/10.1007/s00253-012-4173-2
Article
CAS
PubMed
PubMed Central
Google Scholar
Elzainy TA, Hassan MM, Allam AM (1973) New pathway for nonphosphorylated degradation of gluconate by Aspergillus niger. J Bacteriol 114:457–459
CAS
PubMed
PubMed Central
Google Scholar
Enquist-Newman M, Faust AME, Bravo DD, Santos CNS, Raisner RM, Hanel A, Sarvabhowman P, Le C, Regitsky DD, Cooper SR, Peereboom L, Clark A, Martinez Y, Goldsmith J, Cho MY, Donohoue PD, Luo L, Lamberson B, Tamrakar P, Kim EJ, Villari JL, Gill A, Tripathi SA, Karamchedu P, Paredes CJ, Rajgarhia V, Kotlar HK, Bailey RB, Miller DJ, Ohler NL, Swimmer C, Yoshikuni Y (2014) Efficient ethanol production from brown macroalgae sugars by a synthetic yeast platform. Nature 505:239–243. https://doi.org/10.1038/nature12771
Article
CAS
PubMed
Google Scholar
Glasson CRK, Sims IM, Carnachan SM, de Nys R, Magnusson M (2017) A cascading biorefinery process targeting sulfated polysaccharides (ulvan) from Ulva ohnoi. Algal Res 27:383–391. https://doi.org/10.1016/j.algal.2017.07.001
Article
Google Scholar
Goode D, Lewis ME, Crabbe MJ (1996) Accumulation of xylitol in the mammalian lens is related to glucuronate metabolism. FEBS Lett 395:174–178
Article
CAS
Google Scholar
Groninger-Poe FP (2014) Functional assignments in the enolase superfamily: Investigations of two divergent groups of d-galacturonate dehydratases and galactarate dehydratase-III. University of Illionois
Guillon F, Thibault J, Rombouts FM, Voragen AG, Pilnik W (1989) Enzymic hydrolysis of the “hairy” fragments of sugar-beet pectins. Carbohydr Res 190:97–108
Article
CAS
Google Scholar
Hankes L, Politzer W, Touster O, Anderson L (1969) Myo-inositol catabolism in human pentosurics: the predominant role of the glucuronate-xylulose-pentose phosphate pathway. Ann N Y Acad Sci 165:564–576
CAS
PubMed
Google Scholar
Hantz O (1977) La voie dégradative secondaire du 2 céto 3 desoxygluconate chez Escherichia coli. Oxydation enzymatique du 2 céto 3 desoxygluconate. Dissertation, Claude Bernard University
Hilditch S, Berghäll S, Kalkkinen N, Penttilä M, Richard P (2007) The missing link in the fungal d-galacturonate pathway. J Biol Chem 282:26195–26201. https://doi.org/10.1074/jbc.M704401200
Article
CAS
PubMed
Google Scholar
Hobbs JK, Lee SM, Robb M, Hof F, Barr C, Abe KT, Hehemann J-H, McLean R, Abbott DW, Boraston AB (2016) KdgF, the missing link in the microbial metabolism of uronate sugars from pectin and alginate. Proc Natl Acad Sci 113:6188–6193. https://doi.org/10.1073/pnas.1524214113
Article
CAS
PubMed
Google Scholar
Huisjes EH, Luttik MAH, Almering MJH, Bisschops MMM, Dang DHN, Kleerebezem M, Siezen R, van Maris AJA, Pronk JT (2012) Toward pectin fermentation by Saccharomyces cerevisiae: expression of the first two steps of a bacterial pathway for d-galacturonate metabolism. J Biotechnol 162:303–310. https://doi.org/10.1016/j.jbiotec.2012.10.003
Article
CAS
PubMed
Google Scholar
Ishikawa T, Masumoto I, Iwasa N, Nishikawa H, Sawa Y, Shibata H, Nakamura A, Yabuta Y, Shigeoka S (2006) Functional characterization of d-galacturonic acid reductase, a key enzyme of the ascorbate biosynthesis pathway, from Euglena gracilis. Biosci Biotechnol Biochem 70:2720–2726. https://doi.org/10.1271/bbb.60327
Article
CAS
PubMed
Google Scholar
Ishikura S, Isaji T, Usami N, Kitahara K, Nakagawa J, Hara A (2001) Molecular cloning, expression and tissue distribution of hamster diacetyl reductase. Identity with l-xylulose reductase. Chem Biol Interact 130–132:879–889
Article
Google Scholar
Ishikura S, Usami N, Araki M, Hara A (2005) Structural and functional characterization of rabbit and human l-gulonate 3-dehydrogenase. J Biochem 137:303–314. https://doi.org/10.1093/jb/mvi033
Article
CAS
PubMed
Google Scholar
Kaneko JJ, Harvey JW, Bruss M (1997) Clinical chemistry of domestic animals. Academic Press, San Diego
Google Scholar
Khanh NQ, Ruttkowski E, Leidinger K, Albrecht H, Gottschalk M (1991) Characterization and expression of a genomic pectin methyl esterase-encoding gene in Aspergillus niger. Gene 106:71–77
Article
CAS
Google Scholar
Kuivanen J (2015) Metabolic engineering of the fungal d-galacturonate pathway. Aalto University, Helsinki
Google Scholar
Kuivanen J, Richard P (2018) NADPH-dependent 5-keto-d-gluconate reductase is a part of the fungal pathway for d-glucuronate catabolism. FEBS Lett. https://doi.org/10.1002/1873-3468.12946
Article
PubMed
Google Scholar
Kuivanen J, Mojzita D, Wang Y, Hilditch S, Penttilä M, Richard P, Wiebe MG (2012) Engineering filamentous fungi for conversion of d-galacturonic acid to l-galactonic acid. Appl Environ Microbiol 78:8676–8683
Article
CAS
Google Scholar
Kuivanen J, Dantas H, Mojzita D, Mallmann E, Biz A, Krieger N, Mitchell D, Richard P (2014) Conversion of orange peel to l-galactonic acid in a consolidated process using engineered strains of Aspergillus niger. AMB Express 4:33
Article
Google Scholar
Kuivanen J, Penttilä M, Richard P (2015) Metabolic engineering of the fungal d-galacturonate pathway for l-ascorbic acid production. Microb Cell Fact 14:1–9. https://doi.org/10.1186/s12934-014-0184-2
Article
CAS
Google Scholar
Kuivanen J, Sugai-Guérios MH, Arvas M, Richard P (2016a) A novel pathway for fungal d-glucuronate catabolism contains an l-idonate forming 2-keto-l-gulonate reductase. Sci Rep 6:26329. https://doi.org/10.1038/srep26329
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuivanen J, Wang Y-MJ, Richard P (2016b) Engineering Aspergillus niger for galactaric acid production: elimination of galactaric acid catabolism by using RNA sequencing and CRISPR/Cas9. Microb Cell Fact 15:210. https://doi.org/10.1186/s12934-016-0613-5
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuivanen J, Arvas M, Richard P (2017) Clustered genes encoding 2-keto-l-gulonate reductase and l-idonate 5-dehydrogenase in the novel fungal d-glucuronic acid pathway. Front Microbiol. https://doi.org/10.3389/fmicb.2017.00225
Article
PubMed
PubMed Central
Google Scholar
Kuorelahti S, Kalkkinen N, Penttilä M, Londesborough J, Richard P (2005) Identification in the mold Hypocrea jecorina of the first fungal d-galacturonic acid reductase. Biochemistry. https://doi.org/10.1021/bi050792f
Article
PubMed
Google Scholar
Kuorelahti S, Jouhten P, Maaheimo H, Penttilä M, Richard P (2006) l-galactonate dehydratase is part of the fungal path for d-galacturonic acid catabolism. Mol Microbiol 61:1060–1068. https://doi.org/10.1111/j.1365-2958.2006.05294.x
Article
CAS
PubMed
Google Scholar
Lahaye M, Robic A (2007) Structure and function properties of Ulvan, a polysaccharide from green seaweeds. Biomacromol 8:1765–1774. https://doi.org/10.1021/bm061185q
Article
CAS
Google Scholar
Li X, Wu D, Lu T, Yi G, Su H, Zhang Y (2014) Highly efficient chemical process to convert mucic acid into adipic acid and DFT studies of the mechanism of the rhenium-catalyzed deoxydehydration. Angew Chemie Int Ed 53:4200–4204. https://doi.org/10.1002/anie.201310991
Article
CAS
Google Scholar
Liepins J, Kuorelahti S, Penttilä M, Richard P (2006) Enzymes for the NADPH-dependent reduction of dihydroxyacetone and d-glyceraldehyde and l-glyceraldehyde in the mould Hypocrea jecorina. FEBS J 273:4229–4235. https://doi.org/10.1111/j.1742-4658.2006.05423.x
Article
CAS
PubMed
Google Scholar
Lin JS, Shaw GC (2007) Regulation of the kdulD operon of Bacillus subtilis by the KdgR repressor and the ccpA gene: identification of two KdgR-binding sites within the kdgR-kdul intergenic region. Microbiology 153:701–710. https://doi.org/10.1099/mic.0.2006/002253-0
Article
CAS
PubMed
Google Scholar
Linster CL, Van Schaftingen E (2006) Glucuronate, the precursor of vitamin C, is directly formed from UDP-glucuronate in liver. FEBS J 273:1516–1527. https://doi.org/10.1111/j.1742-4658.2006.05172.x
Article
CAS
PubMed
Google Scholar
Martens-Uzunova ES, Schaap PJ (2008) An evolutionary conserved d-galacturonic acid metabolic pathway operates across filamentous fungi capable of pectin degradation. Fungal Genet Biol 45:1449–1457. https://doi.org/10.1016/j.fgb.2008.08.002
Article
CAS
PubMed
Google Scholar
Martens-Uzunova ES, Schaap PJ (2009) Assessment of the pectin degrading enzyme network of Aspergillus niger by functional genomics. Fungal Genet Biol 46:170–179
Article
Google Scholar
Matsubara T, Hamada S, Wakabayashi A, Kishida M (2016) Fermentative production of l-galactonate by using recombinant Saccharomyces cerevisiae containing the endogenous galacturonate reductase gene from Cryptococcus diffluens. J Biosci Bioeng 122:639–644. https://doi.org/10.1016/j.jbiosc.2016.05.002
Article
CAS
PubMed
Google Scholar
Mekjian KR, Bryan EM, Beall BW, Moran CP (1999) Regulation of hexuronate utilization in Bacillus subtilis. J Bacteriol 181:426–433
CAS
PubMed
PubMed Central
Google Scholar
Micard V, Renard CMGC, Thibault J (1996) Enzymatic saccharification of sugar-beet pulp. Enzym Micobial Technol 19:162–170
Article
CAS
Google Scholar
Mohnen D (2008) Pectin structure and biosynthesis. Curr Opin Plant Biol 11:266–277. https://doi.org/10.1016/j.pbi.2008.03.006
Article
CAS
PubMed
Google Scholar
Mojzita D, Wiebe M, Hilditch S, Boer H, Penttilä M, Richard P (2010) Metabolic engineering of fungal strains for conversion of d-galacturonate to meso-galactarate. Appl Environ Microbiol 76:169–175. https://doi.org/10.1128/AEM.02273-09
Article
CAS
PubMed
Google Scholar
Moon TS, Yoon S-H, Lanza AM, Roy-Mayhew JD, Prather KLJ (2009) Production of glucaric acid from a synthetic pathway in recombinant Escherichia coli. Appl Environ Microbiol 75:589–595. https://doi.org/10.1128/AEM.00973-08
Article
CAS
PubMed
Google Scholar
Motter FA, Kuivanen J, Keränen H, Hilditch S, Penttilä M, Richard P (2014) Categorisation of sugar acid dehydratases in Aspergillus niger. Fungal Genet Biol 64:67–72. https://doi.org/10.1016/j.fgb.2013.12.006
Article
CAS
PubMed
Google Scholar
Müller H-M (1985) Utilization of gluconate by Aspergillus niger. I. Enzymes of phosphorylating and nonphosphorylating pathways. Zentralbl Mikrobiol 140:475–484. https://doi.org/10.1016/S0232-4393(85)80054-8
Article
PubMed
Google Scholar
Nemoz G, Robert-Baudouy J, Stoeber F (1976) Physiological and genetic regulation of the aldohexuronate transport system in Escherichia coli. J Bacteriol 127:706–718
CAS
PubMed
PubMed Central
Google Scholar
Niu J, Alazi E, Reid ID, Arentshorst M, Punt PJ, Visser J, Tsang A, Ram AFJ (2017) An evolutionarily conserved transcriptional activator-repressor module controls expression of genes for d-galacturonic acid utilization in Aspergillus niger. Genetics 205:169–183. https://doi.org/10.1534/genetics.116.194050
Article
CAS
PubMed
Google Scholar
O’Neill MA, Ishii T, Albersheim P, Darvill AG (2004) Rhamnogalacturonan II: structure and function of a borate cross-linked cell wall pectic polysaccharide. Annu Rev Plant Biol 55:109–139
Article
Google Scholar
Paasikallio T, Huuskonen A, Wiebe MG (2017) Scaling up and scaling down the production of galactaric acid from pectin using Trichoderma reesei. Microb Cell Fact 16:119. https://doi.org/10.1186/s12934-017-0736-3
Article
CAS
PubMed
PubMed Central
Google Scholar
Pappenberger G, Hohmann H-P (2014) Industrial production of l-ascorbic acid (vitamin C) and d-isoascorbic acid. Adv Biochem Eng Biotechnol 143:143–188. https://doi.org/10.1007/10_2013_243
Article
CAS
PubMed
Google Scholar
Parkkinen T, Boer H, Jänis J, Andberg M, Penttilä M, Koivula A, Rouvinen J (2011) Crystal structure of uronate dehydrogenase from Agrobacterium tumefaciens. J Biol Chem 286:27294–27300. https://doi.org/10.1074/jbc.M111.254854
Article
CAS
PubMed
PubMed Central
Google Scholar
Preiss J, Ashwell G (1962) Alginic acid metabolism in bacteria. J Biol Chem 237:317–321
CAS
PubMed
Google Scholar
Protzko RJ, Latimer LN, Martinho Z, de Reus E, Seibert T, Benz JP, Dueber JE (2018) Engineering Saccharomyces cerevisiae for co-utilization of d-galacturonic acid and d-glucose from citrus peel waste. Nat Commun 9:5059. https://doi.org/10.1038/s41467-018-07589-w
Article
CAS
PubMed
PubMed Central
Google Scholar
Reis D, Vian B, Roland JJ-C, Boon ME, Leyden P, De Phytopathologie L (1994) Cellulose-glucuronoxylans and plant cell wall structure. Micron 25:171–187. https://doi.org/10.1016/0968-4328(94)90041-8
Article
CAS
Google Scholar
Richard P, Hilditch S (2009) d-Galacturonic acid catabolism in microorganisms and its biotechnological relevance. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-009-1870-6
Article
PubMed
Google Scholar
Rodionova IA, Scott DA, Grishin NV, Osterman AL, Rodionov DA (2012) Tagaturonate-fructuronate epimerase UxaE, a novel enzyme in the hexuronate catabolic network in Thermotoga maritima. Environ Microbiol 14:2920–2934. https://doi.org/10.1111/j.1462-2920.2012.02856.x
Article
CAS
PubMed
PubMed Central
Google Scholar
Roland JF, Cayle T, Dinwoodie RC, Mehnert DW (1986) Fermentation production of ascorbic acid from l-galactonic substrate
Rothe M, Alpert C, Loh G, Blaut M (2013) Novel insights into E. coli’s hexuronate metabolism: KduI facilitates the conversion of galacturonate and glucuronate under osmotic stress conditions. PLoS ONE 8:1. https://doi.org/10.1371/journal.pone.0056906
Article
CAS
Google Scholar
Sato S, Kador PF (1993) Human kidney aldose and aldehyde reductase. J Diabetes Complications 7:179–187
Article
CAS
Google Scholar
Searle-van Leeuwen M, Vincken J, Schipper D, Voragen A, Beldman G (1996) Acetyl esterases of Aspergillus niger: purification and mode of action on pectins. Prog Biotechnol 14:793–798
CAS
Google Scholar
Smiley JD, Ashwell G (1961) Purification and properties of ß-l-hydroxy acid dehydrogenase: II. isolation of ß-keto-l-gulonic acid, an intermediate in l-xylulose biosynthesis. J Biol Chem 236:357–364
CAS
Google Scholar
Souffriau B, den Abt T, Thevelein JM (2012) Evidence for rapid uptake of d-galacturonic acid in the yeast Saccharomyces cerevisiae by a channel-type transport system. FEBS Lett 586:2494–2499. https://doi.org/10.1016/j.febslet.2012.06.012
Article
CAS
PubMed
Google Scholar
Tai Y-S, Xiong M, Jambunathan P, Wang J, Wang J, Stapleton C, Zhang K (2016) Engineering nonphosphorylative metabolism to generate lignocellulose-derived products. Nat Chem Biol 12:247–253. https://doi.org/10.1038/nchembio.2020
Article
CAS
PubMed
Google Scholar
Tubeleviciute A, Teese MG, Jose J (2014) Escherichia coli kduD encodes an oxidoreductase that converts both sugar and steroid substrates. Appl Microbiol Biotechnol 98:5471–5485. https://doi.org/10.1007/s00253-014-5551-8
Article
CAS
PubMed
Google Scholar
van der Vlugt-Bergmans CJ, Meeuwsen PJ, Voragen AG, van Ooyen AJ (2000) Endo-xylogalacturonan hydrolase, a novel pectinolytic enzyme. Appl Environ Microbiol 66:36–41
Article
Google Scholar
van Maris AJA, Abbott DA, Bellissimi E, van den Brink J, Kuyper M, Luttik MAH, Wisselink HW, Scheffers WA, van Dijken JP, Pronk JT (2006) Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie van Leeuwenhoek Int J Gen Mol Microbiol 90:391–418. https://doi.org/10.1007/s10482-006-9085-7
Article
CAS
Google Scholar
Wiebe MG, Mojzita D, Hilditch S, Ruohonen L, Penttilä M (2010) Bioconversion of d-galacturonate to keto-deoxy-l-galactonate (3-deoxy-l-threo-hex-2-ulosonate) using filamentous fungi. BMC Biotechnol 10:63. https://doi.org/10.1186/1472-6750-10-63
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang L, Thiewes H, van Kan JAL (2011) The d-galacturonic acid catabolic pathway in Botrytis cinerea. Fungal Genet Biol 48:990–997. https://doi.org/10.1016/j.fgb.2011.06.002
Article
CAS
PubMed
Google Scholar
Zhang L, Hua C, Stassen JHM, Chatterjee S, Cornelissen M, van Kan JAL (2014) Genome-wide analysis of pectate-induced gene expression in Botrytis cinerea: identification and functional analysis of putative d-galacturonate transporters. Fungal Genet Biol 72:182–191. https://doi.org/10.1016/j.fgb.2013.10.002
Article
CAS
PubMed
Google Scholar
Zhang H, Li X, Su X, Ang EL, Zhang Y, Zhao H (2016a) Production of adipic acid from sugar beet residue by combined biological and chemical catalysis. ChemCatChem 8:1500–1506. https://doi.org/10.1002/cctc.201600069
Article
CAS
Google Scholar
Zhang L, Lubbers RJM, Simon A, Stassen JHM, Vargas Ribera PR, Viaud M, Van Kan JAL (2016b) A novel Zn2Cys6transcription factor BcGaaR regulates d-galacturonic acid utilization in Botrytis cinerea. Mol Microbiol 100:247–262. https://doi.org/10.1111/mmi.13314
Article
CAS
PubMed
Google Scholar