Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) Proceedings of the 2nd international symposium on information theory. Akademiai Kiado, Budapest, pp 267–281
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410
Article
CAS
PubMed
Google Scholar
Balasubramanian G, Sarathi M, Venkatesan C, Thomas J, Sahul Hameed A (2008) Oral administration of antiviral plant extract of Cynodon dactylon on a large scale production against white spot syndrome virus (WSSV) in Penaeus monodon. Aquaculture 279:2–5
Article
Google Scholar
BBS, Yearbook of Agricultural Statistics-2017 (28thSeries) (2017) Bangladesh Bureau of Statistics, Statistics and Informatics Division (SID), Ministry of Planning, Government of the People’s Republic of Bangladesh. BBS, Dhaka
Google Scholar
Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL (2005) GenBank. Nucleic Acids Res 33:D34–D38
Article
CAS
PubMed
Google Scholar
Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino TG, Bertoni M, Bordoli L, Schwede T (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42:W252–W258
Article
CAS
PubMed
PubMed Central
Google Scholar
Bland JM, Altman DG (1995) Multiple significance tests: the Bonferroni method. BMJ 310:170
Article
CAS
PubMed
PubMed Central
Google Scholar
Boni MF, Posada D, Feldman MW (2007) An exact nonparametric method for inferring mosaic structure in sequence triplets. Genetics 176:1035–1047
Article
CAS
PubMed
PubMed Central
Google Scholar
Chakrabarty U, Dutta S, Mallik A, Mandal N (2014a) White spot syndrome virus (WSSV) and prevalence of disease resistance in a commercially cultured population of Penaeus monodon Fabricius, 1798 (Decapoda, Dendrobranchiata). Crustaceana 87:1593–1605
Article
Google Scholar
Chakrabarty U, Mallik A, Mondal D, Dutta S, Mandal N (2014b) Assessment of WSSV prevalence and distribution of disease-resistant shrimp among the wild population of Penaeus monodon along the west coast of India. J Inv Path 119:12–18. Trans Emer Dis 63:1–10
Google Scholar
Chang YS, Liu WJ, Lee CC, Chou TL, Lee YT, Wu TS, Huang JY, Huang WT, Lee TL, Kou GH, Wang AH (2010) A 3D model of the membrane protein complex formed by the white spot syndrome virus structural proteins. PLoS ONE 5:e10718
Article
PubMed
PubMed Central
Google Scholar
Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallographica Sect D Biol Crystal 66:12–21
Article
CAS
Google Scholar
Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Method 9:772
Article
CAS
Google Scholar
DeLano WL (2002) The PyMOL molecular graphics system http://pymol.org
Delport W, Poon AF, Frost SD, Kosakovsky Pond SL (2010) Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics 26:2455–2457
Article
CAS
PubMed
PubMed Central
Google Scholar
DoF (2013) National fish week 2013 compendium, DoF, ministry of fisheries and livestock, People’s Republic of Bangladesh. DoF, Dhaka
Google Scholar
Duffy S, Shackelton LA, Holmes EC (2008) Rates of evolutionary change in viruses: patterns and determinants. Nat Rev Genet 9:267–276
Article
CAS
PubMed
Google Scholar
Durand S, Redman R, Mohney L, Tang-Nelson K, Bonami JR, Lightner DV (2003) Qualitative and quantitative studies on the relative virus load of tails and heads of shrimp acutely infected with WSSV. Aquaculture 216:9–18
Article
Google Scholar
Faye O, Freire CC, Iamarino A, Faye O, de Oliveira JV, Diallo M, Zanotto PM (2014) Molecular evolution of Zika virus during its emergence in the 20th century. PLoS Negl Trop Dis 8:e2636
Article
PubMed
PubMed Central
Google Scholar
Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376
Article
CAS
PubMed
Google Scholar
Garcia-Boronat M, Diez-Rivero CM, Reinherz EL, Reche PA (2008) PVS: a web server for protein sequence variability analysis tuned to facilitate conserved epitope discovery. Nucleic Acids Res 36:W35–W41
Article
CAS
PubMed
PubMed Central
Google Scholar
Gouy M, Guindon S, Gascuel O (2009) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224
Article
PubMed
Google Scholar
Hall TA (1999) BioEdit a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Information Retrieval Ltd., London, pp 95–98
Google Scholar
Hossain A, Nandi SP, Siddique MA, Sanyal SK, Sultana M, Hossain MA (2015) Prevalence and distribution of white spot syndrome virus in cultured shrimp. Lett Appl Microbiol 60:128–134
Article
CAS
PubMed
Google Scholar
Hossain A, Sanyal SK, Siddique MA, Biswas RK, Sultana M, Hossain MA (2016) Envelope protein gene VP466-a target for PCR detection of white spot syndrome virus in shrimp. Bangladesh J Microbiol 31(1):65–68
Article
Google Scholar
Hurvich CM, Tsai CL (1993) A corrected akaike information criterion for vector autoregressive model selection. J Time Series Anal 14:271–279
Article
Google Scholar
Jeswin J, Anju A, Thomas PC, Paulton MP, Vijayan KK (2015) Analysis of viral load between different tissues and rate of progression of white spot syndrome virus (WSSV) in Penaeus monodon. Aqua Res 46:2003–2012
Article
Google Scholar
Joseph TC, Rajan LA, James R, Lalitha K, Surendran P (2015) Variations of structural protein sequences among geographical isolates of white spot syndrome virus. Int Aquat Res 7:85–91
Article
Google Scholar
Kabat E, Wu T, Bilofsky H (1977) Unusual distributions of amino acids in complementarity-determining (hypervariable) segments of heavy and light chains of immunoglobulins and their possible roles in specificity of antibody-combining sites. J Biol Chem 252:6609–6616
CAS
PubMed
Google Scholar
Kosakovsky Pond SL, Posada D, Gravenor MB, Woelk CH, Frost SD (2006) Automated phylogenetic detection of recombination using a genetic algorithm. Mol Biol Evol 23:1891–1901
Article
PubMed
Google Scholar
Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874
Article
CAS
PubMed
Google Scholar
Kwok S, Kellogg D, McKinney N, Spasic D, Goda L, Levenson C (1990) Effects of primer-template mismatches on the polymerase chain reaction: human immunodeficiency virus type 1 model studies. Nucleic Acid Res 18:999–1005
Article
CAS
PubMed
PubMed Central
Google Scholar
Lafferty KD, Harvell CD, Conrad JM, Friedman CS, Kent ML, Kuris AM, Powell EN, Rondeau D, Saksida SM (2015) Infectious diseases affect marine fisheries and aquaculture economics. Ann Rev Mar Sci 7:471–496
Article
PubMed
Google Scholar
Lan Y, Lu W, Xu X (2002) Genomic instability of prawn white spot bacilliform virus (WSBV) and its association to virus virulence. Virus Res 90:269–274
Article
CAS
PubMed
Google Scholar
Leal C, Carvalho-Castro G, Cottorello A, Leite R, Figueiredo H (2013) Comparative analysis of conventional PCR and real-time PCR to diagnose shrimp WSD. Braz J Microbiol 44:901–904
Article
CAS
PubMed
PubMed Central
Google Scholar
Mallik A, Chakrabarty U, Dutta S, Mondal D, Mandal N (2016) Study on the distribution of disease-resistant shrimp identified by DNA markers in respect to WSSV infection in different seasons along the entire east coast of India aiming to prevent white spot disease in penaeus monodon. Trans Emer Dis 63:1–10
Google Scholar
Martin D, Rybicki E (2000) RDP: detection of recombination amongst aligned sequences. Bioinformatics 16:562–563
Article
CAS
PubMed
Google Scholar
Martin D, Posada D, Crandall K, Williamson C (2005) A modified bootscan algorithm for automated identification of recombinant sequences and recombination breakpoints. AIDS Res Human Retrov 21:98–102
Article
CAS
Google Scholar
Martin DP, Murrell B, Golden M, Khoosal A, Muhire B (2015) RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol 1. https://doi.org/10.1093/ve/vev003
Mendoza-Cano F, Sánchez-Paz A (2013) Development and validation of a quantitative real-time polymerase chain assay for universal detection of the white spot syndrome virus in marine crustaceans. Virol J 10:186
Article
CAS
PubMed
PubMed Central
Google Scholar
Meng XH, Jang IK, Seo HC, Cho YR (2010) A TaqMan real-time PCR assay for survey of white spot syndrome virus (WSSV) infections in Litopenaeus vannamei postlarvae and shrimp of farms in different grow-out seasons. Aquaculture 310:32–37
Article
CAS
Google Scholar
Molina-Garza ZJ, Galaviz-Silva L, Rosales-Encinas J, Alcocer-González J (2008) Nucleotide sequence variations of the major structural proteins (VP15, VP19, VP26 and VP28) of white spot syndrome virus (WSSV), a pathogen of cultured Litopenaeus vannamei in Mexico. J Fish Dis 31:197–203
Article
CAS
PubMed
Google Scholar
Morse SS (1994) Towards an evolutionary biology of viruses. The evolutionary biology of viruses. Raven press, New York, pp 1–28
Google Scholar
Namikoshi A, Wu JL, Yamashita T, Nishizawa T, Nishioka T, Arimoto M (2004) Vaccination trials with Penaeus japonicus to induce resistance to white spot syndrome virus. Aquaculture 229:25–35
Article
Google Scholar
Nunan LM, Lightner DV (2011) Optimized PCR assay for detection of white spot syndrome virus (WSSV). J Virol Methods 171:318–321
Article
CAS
PubMed
Google Scholar
Oidtmann B, Stentiford GD (2011) White spot syndrome virus (WSSV) concentrations in crustacean tissues—a review of data relevant to assess the risk associated with commodity trade. Transbound Emer Dis 58:469–482
Article
CAS
Google Scholar
Padidam M, Sawyer S, Fauquet CM (1999) Possible emergence of new geminiviruses by frequent recombination. Virology 265:218–225
Article
CAS
PubMed
Google Scholar
Ramachandran GN, Ramakrishnan C, Sasisekharan V (1963) Stereochemistry of polypeptide chain configurations. J Mol Biol 7:95–99
Article
CAS
PubMed
Google Scholar
Ramos-Carreño S, Valencia-Yáñez R, Correa-Sandoval F, Ruíz-García N, Díaz-Herrera F, Giffard-Mena I (2014) White spot syndrome virus (WSSV) infection in shrimp (Litopenaeus vannamei) exposed to low and high salinity. Archiv Virol 159(9):2213–2222
Article
Google Scholar
Rout N, Kumar S, Jaganmohan S, Murugan V (2007) DNA vaccines encoding viral envelope proteins confer protective immunity against WSSV in black tiger shrimp. Vaccine 25:2778–2786
Article
CAS
PubMed
Google Scholar
Sahoo AK, Mohan C, Shankar K, Corsin F, Turnbull JF, Thakur PC, Hao NV, Morgan KL, Padiyar AP (2010) Clinical white spot disease status in Penaeus monodon during the middle of the culture period-its epidemiological significance. J Fis Dis 33:609–615
Article
CAS
Google Scholar
Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464
Article
Google Scholar
Sippl MJ (1993) Recognition of errors in three-dimensional structures of proteins. Proteins Struct Funct Bioinform 17:355–362
Article
CAS
Google Scholar
Sritunyalucksana K, Wannapapho W, Lo CF, Flegel TW (2006) PmRab7 is a VP28-binding protein involved in white spot syndrome virus infection in shrimp. J Virol 80:10734–10742
Article
CAS
PubMed
PubMed Central
Google Scholar
Syed Musthaq S, Madhan S, Sahul Hameed AS, Kwang J (2009) Localization of VP28 on the baculovirus envelope and its immunogenicity against white spot syndrome virus in Penaeus monodon. Virology 391:315–324
Article
CAS
PubMed
Google Scholar
Tang KF, Lightner DV (2000) Quantification of white spot syndrome virus DNA through a competitive polymerase chain reaction. Aquaculture 189:11–21
Article
CAS
Google Scholar
Tang X, Wu J, Sivaraman J, Hew CL (2007) Crystal structures of major envelope proteins VP26 and VP28 from white spot syndrome virus shed light on their evolutionary relationship. J Virol 81:6709–6717
Article
CAS
PubMed
PubMed Central
Google Scholar
Thuong K, Tuan V, Li W, Sorgeloos P, Bossier P, Nauwynck H (2016) Per os infectivity of white spot syndrome virus (WSSV) in white-legged shrimp (Litopenaeus vannamei) and role of peritrophic membrane. Vet Res 47:1
Article
Google Scholar
van Hulten MC, Witteveldt J, Snippe M, Vlak JM (2001) White spot syndrome virus envelope protein VP28 is involved in the systemic infection of shrimp. Virology 285:228–233
Article
PubMed
Google Scholar
Venegas CA, Nonaka L, Mushiake K, Nishizawa T, Murog K (2000) Quasi-immune response of Penaeus japonicus to penaeid rod-shaped DNA virus (PRDV). Dis Aqua Org 42:83–90
Article
CAS
Google Scholar
Verma AK, Gupta S, Verma S, Mishra A, Nagpure NS, Singh SP, Pathak AK, Sarkar UK, Singh SP, Singh M, Seth PK (2013) Interaction between shrimp and white spot syndrome virus through PmRab7-VP28 complex: an insight using simulation and docking studies. J Mol Model 19:1285–1294
Article
CAS
PubMed
Google Scholar
Vidal OM, Granja CB, Aranguren F, Brock JA, Salazar M (2001) A profound effect of hyperthermia on survival of Litopenaeus vannamei juveniles infected with white spot syndrome virus. J World Aqua Soc 32:364–372
Article
Google Scholar
Walker PJ, Gudkovs N, Mohan C, Raj VS, Pradeep B, Sergeant E, Mohan AC, Ravibabu G, Karunasagar I, Santiago TC (2011) Longitudinal disease studies in small-holder black tiger shrimp (Penaeus monodon) ponds in Andhra Pradesh, India. II. Multiple WSSV genotypes associated with disease outbreaks in ponds seeded with uninfected postlarvae. Aquaculture 319:18–24
Article
Google Scholar
Wheeler TJ, Clements J, Finn RD (2014) Skylign: a tool for creating informative, interactive logos representing sequence alignments and profile hidden Markov models. BMC Bioinf 15:7
Article
Google Scholar
Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:W407–W410
Article
PubMed
PubMed Central
Google Scholar
You Z, Nadala EC Jr, Yang J, Loh PC (2004) Conservation of the DNA sequences encoding the major structural viral proteins of WSSV. Dis Aquat Organ 61:159–163
Article
CAS
PubMed
Google Scholar