Aidoo KE, Hendry R, Wood BJB. Estimation of fungal growth in a solid-state fermentation system. Eur J Appl Microbiol. 1981;12:6–9. doi:10.1007/Bf00508111.
Article
CAS
Google Scholar
Andersen MR (2008) Systems biology studies of Aspergilli—from sequence to science. PhD Thesis, Technical University of Denmark.
Archer DB. Filamentous fungi as microbial cell factories for food use. Curr Opin Biotech. 2000;11:478–83.
Article
PubMed
CAS
Google Scholar
Archer DB, Roberts IN, MacKenzie DA. Heterologous protein secretion from Aspergillus niger in phosphate-buffered batch culture. Appl Microbiol Biotechnol. 1990;34:313–5.
CAS
Google Scholar
Aro N, Saloheimo A, Ilmén M, Penttilä M. ACEII, a novel transcriptional activator involved in regulation of cellulase and xylanase genes of Trichoderma reesei. J Biol Chem. 2001;276:24309–14. doi:10.1074/jbc.M003624200.
Article
PubMed
CAS
Google Scholar
Battaglia E, Visser L, Nijssen A, van Veluw GJ, Wösten HA, de Vries RP. Analysis of regulation of pentose utilisation in Aspergillus niger reveals evolutionary adaptations in Eurotiales. Stud Mycol. 2011;69:31–8. doi:10.3114/sim.2011.69.03.
Article
PubMed
PubMed Central
CAS
Google Scholar
Boeke JD, LaCroute F, Fink GR. A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet. 1984;197:345–6.
Article
PubMed
CAS
Google Scholar
Caddick MX, Dobson C. Gene regulation. In: Goldman GH, Osmani SA, editors. The Aspergilli. Genomics, medical aspects, biotechnology, and research methods. CRC Press; 2008. p. 103–19.
Carvalho ND, Arentshorst M, Jin Kwon M, Meyer V, Ram AF. Expanding the ku70 toolbox for filamentous fungi: establishment of complementation vectors and recipient strains for advanced gene analyses. Appl Microbiol Biotechnol. 2010;87:1463–73. doi:10.1007/s00253-010-2588-1.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chilton IJ, Delaney CE, Barham-Morris J, Fincham DA, Hooley P, Whitehead MP. The Aspergillus nidulans stress response transcription factor StzA is ascomycete-specific and shows species-specific polymorphisms in the C-terminal region. Mycol Res. 2008;112:1435–46. doi:10.1016/j.mycres.2008.06.028.
Article
PubMed
CAS
Google Scholar
Coradetti ST, Craig JP, Xiong Y, Shock T, Tian C, Glass NL. Conserved and essential transcription factors for cellulase gene expression in ascomycete fungi. Proc Natl Acad Sci USA. 2012;109:7397–402. doi:10.1073/pnas.1200785109.
Article
PubMed
PubMed Central
Google Scholar
de Souza WR, de Gouvea PF, Savoldi M, Malavazi I, de Souza Bernardes LA, Goldman MH, de Vries RP, de Castro Oliveira JV, Goldman GH. Transcriptome analysis of Aspergillus niger grown on sugarcane bagasse. Biotech Biofuels. 2011;4:40. doi:10.1186/1754-6834-4-40.
Article
CAS
Google Scholar
de Souza WR, Maitan-Alfenas GP, de Gouvêa PF, Brown NA, Savoldi M, Battaglia E, Goldman MHS, de Vries RP, Goldman GH. The influence of Aspergillus niger transcription factors AraR and XlnR in the gene expression during growth in D-xylose, L-arabinose and steam-exploded sugarcane bagasse. Fungal Genet Biol. 2013;60:29–45. doi:10.1016/j.fgb.2013.07.007.
Article
PubMed
CAS
Google Scholar
Delmas S, Pullan ST, Gaddipati S, Kokolski M, Malla S, Blythe MJ, Ibbett R, Campbell M, Liddell S, Aboobaker A, Tucker GA, Archer DB. Uncovering the genome-wide transcriptional responses of the filamentous fungus Aspergillus niger to lignocellulose using RNA sequencing. PLoS Genet. 2012;8:e1002875. doi:10.1371/journal.pgen.1002875.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gusakov AV. Alternatives to Trichoderma reesei in biofuel production. Trends Biotech. 2011;29:419–25. doi:10.1016/j.tibtech.2011.04.004.
Article
CAS
Google Scholar
Hakkinen M, Valkonen M, Westerholm-Parvinen A, Aro N, Arvas M, Vitikainen M, Penttilӓ M, Saloheimo M, Pakula T. Screening of candidate regulators for cellulase and hemicellulase production in Trichoderma reesei and identification of a factor essential for cellulase production. Biotech Biofuels. 2014;7:14. doi:10.1186/1754-6834-7-14.
Article
CAS
Google Scholar
Karaffa L, Kubicek CP. Aspergillus niger citric acid accumulation: do we understand this well working black box? Appl Microbiol Biotechnol. 2003;61:189–96. doi:10.1007/s00253-002-1201-7.
Article
PubMed
CAS
Google Scholar
Kawasaki L, Sanchez O, Shiozaki K, Aguirre J. SakA MAP kinase is involved in stress signal transduction, sexual development and spore viability in Aspergillus nidulans. Mol Microbiol. 2002;45:1153–63. doi:10.1046/j.1365-2958.2002.03087.x.
Article
PubMed
CAS
Google Scholar
Kowalczyk JE, Gruben BS, Battaglia E, Wiebenga A, Majoor E, de Vries RP. Genetic interaction of Aspergillus niduland galR, xlnR and araR in regulating D-galactose and L-arabinose release and catabolism gene expression. PLoS One. 2015;10:e0143200. doi:10.1371/journal.pone.0143200.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kunitake E, Tani S, Sumitani J-I, Kawaguchi T. A novel transcriptional regulator, ClbR, controls the cellobiose- and cellulose-responsive induction of cellulase and xylanase genes regulated by two distinct signaling pathways in Aspergillus aculeatus. Appl Microbiol Biotechnol. 2012;97:2017–28. doi:10.1007/s00253-012-4305-8.
Article
PubMed
CAS
Google Scholar
Kurasawa T, Yachi M, Suto M, Kamagata Y, Takao S, Tomita F. Induction of cellulase by gentiobiose and its sulfur-containing analog in Penicillium purpurogenum. Appl Environ Microbiol. 1992;58:106–10.
PubMed
PubMed Central
CAS
Google Scholar
Li W, Abad JA, French-Monar RD, Rascoe J, Wen A, Gudmestad NC, Secor GA, Lee IM, Duan Y, Levy L. Multiplex real-time PCR for detection, identification and quantification of 'Candaditus Liberibacter solanacearum' in potato plants with zebra chip. J Microbiol Methods. 2009;59–65. doi:10.1016/j.mimet.2009.04.009.
Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42:D490–5. doi:10.1093/nar/gkt1178.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mach-Aigner AR, Omony J, Jovanovic B, van Boxtel AJB, de Graaff LH. D-xylose concentration-dependent hydrolase expression profiles and the function of CreA and XlnR in Aspergillus niger. Appl Environ Microbiol. 2012;78:3145–55. doi:10.1128/aem.07772-11.
Article
PubMed
PubMed Central
CAS
Google Scholar
Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 1959;31:426.
Article
CAS
Google Scholar
Morgan MJ, Lehmann M, Schwarzländer M, Baxter CJ, Sienkiewicz-Porzucek A, Williams TC, Schauer N, Fernie AR, Fricker MD, Ratcliffe RG, Sweetlove LJ, Finkemeier I. Decrease in manganese superoxide dismutase leads to reduced root growth and affects tricarboxylic acid cycle flux and mitochondrial redox homeostasis. Plant Physiol. 2008;147:101–14. doi:10.1104/pp.107.113613.
Article
PubMed
PubMed Central
CAS
Google Scholar
Noguchi Y, Sano M, Kanamaru K, Ko T, Takeuchi M, Kato M, Kobayashi T. Genes regulated by AoXlnR, the xylanolytic and cellulolytic transcriptional regulator, in Aspergillus oryzae. Appl Microbiol Biotechnol. 2009;85:141–54. doi:10.1007/s00253-009-2236-9.
Article
PubMed
CAS
Google Scholar
Ogawa M, Kobayashi T, Koyama Y. ManR, a transcriptional regulator of the β-mannan utilization system, controls the cellulose utilization system in Aspergillus oryzae. Biosci Biotech Biochem. 2013;77:426–9. doi:10.1271/bbb.120795.
Article
CAS
Google Scholar
Pedersen H, Christensen B, Hjort C, Nielsen J. Construction and characterization of an oxalic acid non-producing strain of Aspergillus niger. Metab Eng. 2000;2:34–41. doi:10.1006/mben.1999.0136.
Article
PubMed
CAS
Google Scholar
Pel HJ, de Winde JH, Archer DB, Dyer PS, Hofmann G, Schaap PJ, Turner G, de Vries RP, Albang R, Albermann K, Andersen MR, Bendtsen JD, Benen JAE, van den Berg M, Breestraat S, Caddick MX, Contreras R, Cornell M, Coutinho PM, Danchin EGJ, Debets AJM, Dekker P, van Dijck PWM, van Dijk A, Dijkhuizen L, Driessen AJM, d’Enfert C, Geysens S, Goosen C, Groot GSP, de Groot PWJ, Guillemette T, Henrissat B, Herweijer M, van den Hombergh JPTW, van den Hondel CAMJJ, van der Heijden RTJM, van der Kaaij RM, Klis FM, Kools HJ, Kubicek CP, van Kuyk PA, Lauber J, Lu X, van der Maarel MJEC, Meulenberg R, Menke H, Mortimer MA, Nielsen J, Oliver SG, Olsthoorn M, Pal K, van Peij NNME, Ram AFJ, Rinas U, Roubos JA, Sagt CMJ, Schmoll M, Sun J, Ussery D, Varga J, Vervecken W, van de Vondervoort PJJ, Wedler H, Wösten HAB, Zeng A-P, van Ooyen AJJ, Visser J, Stam H. Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotech. 2007;25:221–31. doi:http://www.nature.com/nbt/journal/v25/n2/suppinfo/nbt1282_S1.html.
Pullan ST, Daly P, Delmas S, Ibbett R, Kokolski M, Neiteler A, van Munster JM, Wilson R, Blythe MJ, Gaddipati S, Tucker GA, Archer DB. RNA-sequencing reveals the complexities of the transcriptional response to lignocellulosic biofuel substrates in Aspergillus niger. Fungal Biol Biotechnol. 2014;1:3. doi:10.1186/s40694-014-0003-x.
Article
Google Scholar
Pusztai A. Hexosamines in the seeds of higher plants (Spermatophytes). Nature. 1964;201:1328–9.
Article
PubMed
CAS
Google Scholar
Scherer S, Davis RW. Replacement of chromosome segments with altered DNA sequences constructed in vitro. Proc Natl Acad Sci USA. 1979;76:4951–5.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shubeita HE, Sambrook JF, McCormick AM. Molecular cloning and analysis of functional cDNA and genomic clones encoding bovine cellular retinoic acid-binding protein. Proc Natl Acad Sci USA. 1987;84:5645–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sims RE, Mabee W, Saddler JN, Taylor M. An overview of second generation biofuel technologies. Bioresource Tech. 2010;101:1570–80. doi:10.1016/j.biortech.2009.11.046.
Article
CAS
Google Scholar
Sternberg D, Mandels GR. Induction of cellulolytic enzymes in Trichoderma reesei by sophorose. J Bacteriol. 1979;139:761–9.
PubMed
PubMed Central
CAS
Google Scholar
Stricker AR, Grosstessner-Hain K, Würleitner E, Mach RL. Xyr1 (xylanase regulator 1) regulates both the hydrolytic enzyme system and d-xylose metabolism in Hypocrea jecorina. Euk Cell. 2006;5:2128–37. doi:10.1128/ec.00211-06.
Article
CAS
Google Scholar
Stricker AR, Mach RL, de Graaff LH. Regulation of transcription of cellulases- and hemicellulases-encoding genes in Aspergillus niger and Hypocrea jecorina (Trichoderma reesei). Appl Microbiol Biotechnol. 2008;78:211–20. doi:10.1007/s00253-007-1322-0.
Article
PubMed
CAS
Google Scholar
Sun J, Tian C, Diamond S, Glass NL. Deciphering transcriptional regulatory mechanisms associated with hemicellulose degradation in Neurospora crassa. Euk Cell. 2012;11:482–93. doi:10.1128/EC.05327-11.
Article
CAS
Google Scholar
Todd R, Zhou M, Ohm R, Leeggangers H, Visser L, de Vries R. Prevalence of transcription factors in ascomycete and basidiomycete fungi. BMC Genom. 2014;15:214. doi:10.1186/1471-2164-15-214.
Article
CAS
Google Scholar
van Hartingsveldt W, Mattern IE, van Zeijl CM, Pouwels PH, van den Hondel CA. Development of a homologous transformation system for Aspergillus niger based on the pyrG gene. Mol Gen Genet. 1987;206:71–5.
Article
PubMed
Google Scholar
van Munster JM, Daly P, Delmas S, Pullan ST, Blythe MJ, Malla S, Kokolski M, Noltorp EC, Wennberg K, Fetherston R, Beniston R, Yu X, Dupree P, Archer DB. The role of carbon starvation in the induction of enzymes that degrade plant-derived carbohydrates in Aspergillus niger. Fungal Genet Biol. 2014;72:34–47. doi:10.1016/j.fgb.2014.04.006.
Article
PubMed
PubMed Central
CAS
Google Scholar
van Peij NNME, Gielkens MMC, de Vries RP, Visser J, de Graaff LH. The transcriptional activator XlnR regulates both xylanolytic and endoglucanase gene expression in Aspergillus niger. Appl Environ Microbiol. 1998a;64:3615–9.
PubMed
PubMed Central
Google Scholar
van Peij NNME, Visser J, De Graaff LH. Isolation and analysis of xlnR, encoding a transcriptional activator co-ordinating xylanolytic expression in Aspergillus niger. Mol Microbiol. 1998b;27:131–42. doi:10.1046/j.1365-2958.1998.00666.x.
Article
PubMed
Google Scholar
Welchen E, Hildebrandt TM, Lewejohann D, Gonzalez DH, Braun HP. Lack of cytochrome c in Arabidopsis decreases stability of Complex IV and modifies redox metabolism without affecting Complexes I and III. Biochim Biophys Acta. 2012;1817:990–1001. doi:10.1016/j.bbabio.2012.04.008.
Article
PubMed
CAS
Google Scholar