Andreasen AA, Stier TJB: Anaerobic nutrition of Saccharomyces cerevisiae. I. Ergosterol requirement for growth in a defined medium. J Cell Physiol 1953, 41(1):23–36. 10.1002/jcp.1030410103
CAS
PubMed
Google Scholar
Andreasen AA, Stier TJB: Anaerobic nutrition of Saccharomyces cerevisiae. II. Unsaturated fatty and requirement for growth in a defined medium. J Cell Physiol 1954, 43(3):271–281. 10.1002/jcp.1030430303
CAS
PubMed
Google Scholar
Ansell R, Granath K, Hohmann S, Thevelein JM, Adler L: The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. EMBO J 1997, 16(9):2179–2187. 10.1093/emboj/16.9.2179
PubMed Central
CAS
PubMed
Google Scholar
Bengtsson O, Hahn-Hägerdal B, Gorwa-Grauslund MF: Xylose reductase from Pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae . Biotechnol Biofuels 2009, 2: 9. 10.1186/1754-6834-2-9
PubMed Central
PubMed
Google Scholar
Björkqvist S, Ansell R, Adler L, Lidén G: Physiological response to anaerobicity of glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae . Appl Environ Microbiol 1997, 63(1):128–132.
PubMed Central
PubMed
Google Scholar
Blake WJ MK, Cantor CR, Collins JJ: Noise in eukaryotic gene expression. Nature 2003, 422(6932):633–637. 10.1038/nature01546
PubMed
Google Scholar
Blomberg A, Adler L: Roles of glycerol and glycerol-3-phosphate dehydrogenase (NAD+) in acquired osmotolerance of Saccharomyces cerevisiae . J Bacteriol 1989, 171(2):1087–1092.
PubMed Central
CAS
PubMed
Google Scholar
Bro C, Knudsen S, Regenberg B, Olsson L, Nielsen J: Improvement of galactose uptake in Saccharomyces cerevisiae through overexpression of phosphoglucomutase: example of transcript analysis as a tool in inverse metabolic engineering. Appl Environ Microbiol 2005, 71(11):6465–6472. 10.1128/AEM.71.11.6465-6472.2005
PubMed Central
CAS
PubMed
Google Scholar
Bruinenberg P, de Bot PM, van Dijken J, Scheffers WA: The role of redox balances in the anaerobic fermentation of xylose by yeasts. Eur J Appl Microbiol Biotechnol 1983, 18(5):287–292. 10.1007/BF00500493
CAS
Google Scholar
Bücher T, Brauser B, Conze A, Klein F, Langguth O, Sies H: State of oxidation-reduction and state of binding in the cytosolic NADH-system as disclosed by equilibration with extracellular lactate-pyruvate in hemoglobin-free perfused rat liver. Eur J Biochem 1972, 27(2):301–317. 10.1111/j.1432-1033.1972.tb01840.x
PubMed
Google Scholar
Canelas AB, van Gulik WM, Heijnen JJ: Determination of the cytosolic free NAD/NADH ratio in Saccharomyces cerevisiae under steady-state and highly dynamic conditions. Biotechnol Bioeng 2008, 100(4):734–743. 10.1002/bit.21813
CAS
PubMed
Google Scholar
Carlquist M, Fernandes RL, Helmark S, Heins AL, Lundin L, Sorensen SJ, Gernaey KV, Lantz AE: Physiological heterogeneities in microbial populations and implications for physical stress tolerance. Microb Cell Fact 2012, 11: 94. 10.1186/1475-2859-11-94
PubMed Central
CAS
PubMed
Google Scholar
Cirillo VP: Galactose transport in Saccharomyces cerevisiae. I. Nonmetabolized sugars as substrates and inducers of the galactose transport system. J Bacteriol 1968, 95(5):1727–1731.
PubMed Central
CAS
PubMed
Google Scholar
Cormack BP, Valdivia RH, Falkow S: FACS-optimized mutants of the green fluorescent protein (GFP). Gene 1996, 173(1):33–38. 10.1016/0378-1119(95)00685-0
CAS
PubMed
Google Scholar
Cormack BP, Bertram G, Egerton M, Gow NA, Falkow S, Brown AJ: Yeast-enhanced green fluorescent protein (yEGFP): a reporter of gene expression in Candida albicans . Microbiology 1997, 143(Pt 2):303–311. 10.1099/00221287-143-2-303
CAS
PubMed
Google Scholar
Dardalhon M, Kumar C, Iraqui I, Vernis L, Kienda G, Banach-Latapy A, He T, Chanet R, Faye G, Outten CE, Huang ME: Redox-sensitive YFP sensors monitor dynamic nuclear and cytosolic glutathione redox changes. Free Radic Biol Med 2012, 52(11-12):2254–2265. 10.1016/j.freeradbiomed.2012.04.004
PubMed Central
CAS
PubMed
Google Scholar
Dietrich JA, McKee AE, Keasling JD: High-throughput metabolic engineering: advances in small-molecule screening and selection. Annu Rev Biochem 2010, 79: 563–590. 10.1146/annurev-biochem-062608-095938
CAS
PubMed
Google Scholar
Eriksson P, Andre L, Ansell R, Blomberg A, Adler L: Cloning and characterization of GPD2 , a second gene encoding sn-glycerol 3-phosphate dehydrogenase (NAD+) in Saccharomyces cerevisiae , and its comparison with GPD1 . Mol Microbiol 1995, 17(1):95–107. 10.1111/j.1365-2958.1995.mmi_17010095.x
CAS
PubMed
Google Scholar
Förster J, Famili I, Fu P, Palsson BO, Nielsen J: Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res 2003, 13(2):244–253. 10.1101/gr.234503
PubMed Central
PubMed
Google Scholar
Garcia Sanchez R, Hahn-Hägerdal B, Gorwa-Grauslund MF: Cross-reactions between engineered xylose and galactose pathways in recombinant Saccharomyces cerevisiae . Biotechnol Biofuels 2010, 3: 19. 10.1186/1754-6834-3-19
PubMed Central
PubMed
Google Scholar
Gietz RD, Sugino A: New yeast- Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 1988, 74(2):527–534. 10.1016/0378-1119(88)90185-0
CAS
PubMed
Google Scholar
Gietz RD, Woods RA: Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 2002, 350: 87–96. 10.1016/S0076-6879(02)50957-5
CAS
PubMed
Google Scholar
Gonzalez E, Fernandez MR, Larroy C, Sola L, Pericas MA, Pares X, Biosca JA: Characterization of a (2R,3R)-2,3-butanediol dehydrogenase as the Saccharomyces cerevisiae YAL060W gene product. Disruption and induction of the gene. J Biol Chem 2000, 275(46):35876–35885. 10.1074/jbc.M003035200
CAS
PubMed
Google Scholar
Hamacher T, Becker J, Gardonyi M, Hahn-Hägerdal B, Boles E: Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology 2002, 148(Pt 9):2783–2788.
CAS
PubMed
Google Scholar
Hebisch E, Knebel J, Landsberg J, Frey E, Leisner M: High variation of fluorescence protein maturation times in closely related Escherichia coli strains. PLoS One 2013, 8(10):e75991. 10.1371/journal.pone.0075991
PubMed Central
CAS
PubMed
Google Scholar
Inoue H, Nojima H, Okayama H: High efficiency transformation of Escherichia coli with plasmids. Gene 1990, 96(1):23–28. 10.1016/0378-1119(90)90336-P
CAS
PubMed
Google Scholar
Ishii J, Izawa K, Matsumura S, Wakamura K, Tanino T, Tanaka T, Ogino C, Fukuda H, Kondo A: A simple and immediate method for simultaneously evaluating expression level and plasmid maintenance in yeast. J Biochem 2009, 145(6):701–708. 10.1093/jb/mvp028
CAS
PubMed
Google Scholar
Jeppsson M, Träff K, Johansson B, Hahn-Hägerdal B, Gorwa-Grauslund MF: Effect of enhanced xylose reductase activity on xylose consumption and product distribution in xylose-fermenting recombinant Saccharomyces cerevisiae . FEMS Yeast Res 2003, 3(2):167–175. 10.1016/S1567-1356(02)00186-1
CAS
PubMed
Google Scholar
Johnston M: A model fungal gene regulatory mechanism: the GAL genes of Saccharomyces cerevisiae . Microbiol Rev 1987, 51(4):458–476.
PubMed Central
CAS
PubMed
Google Scholar
Karhumaa K, Hahn-Hägerdal B, Gorwa-Grauslund MF: Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Yeast 2005, 22(5):359–368. 10.1002/yea.1216
CAS
PubMed
Google Scholar
Lidén G, Walfridsson M, Ansell R, Anderlund M, Adler L, Hahn-Hägerdal B: A glycerol-3-phosphate dehydrogenase-deficient mutant of Saccharomyces cerevisiae expressing the heterologous XYL1 gene. Appl Environ Microbiol 1996, 62(10):3894–3896.
PubMed Central
PubMed
Google Scholar
Mateus C, Avery SV: Destabilized green fluorescent protein for monitoring dynamic changes in yeast gene expression with flow cytometry. Yeast 2000, 16(14):1313–1323. 10.1002/1097-0061(200010)16:14<1313::AID-YEA626>3.0.CO;2-O
CAS
PubMed
Google Scholar
Mumberg D, Müller R, Funk M: Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 1995, 156(1):119–122. 10.1016/0378-1119(95)00037-7
CAS
PubMed
Google Scholar
Murray DB, Haynes K, Tomita M: Redox regulation in respiring Saccharomyces cerevisiae . Biochim Biophys Acta 2011, 1810(10):945–958. 10.1016/j.bbagen.2011.04.005
CAS
PubMed
Google Scholar
Nissen TL, Schulze U, Nielsen J, Villadsen J: Flux distributions in anaerobic, glucose-limited continuous cultures of Saccharomyces cerevisiae . Microbiology 1997, 143(Pt 1):203–218. 10.1099/00221287-143-1-203
CAS
PubMed
Google Scholar
Rizzi M, Erlemann P, Bui-Thanh N-A, Dellweg H: Xylose fermentation by yeasts. Appl Microbiol Biotechnol 1988, 29(2-3):148–154. 10.1007/BF00939299
CAS
Google Scholar
Romanos MA, Scorer CA, Clare JJ: Foreign gene expression in yeast: a review. Yeast 1992, 8(6):423–488. 10.1002/yea.320080602
CAS
PubMed
Google Scholar
Runquist D, Hahn-Hägerdal B, Bettiga M: Increased ethanol productivity in xylose-utilizing Saccharomyces cerevisiae via a randomly mutagenized xylose reductase. Appl Environ Microbiol 2010, 76(23):7796–7802. 10.1128/AEM.01505-10
PubMed Central
CAS
PubMed
Google Scholar
Sambrock J, Russell DW: Molecular Cloning, a Laboratory Manual. Press Cold Spring Harbor Laboratory, New York, USA; 2001.
Google Scholar
Sandström AG, Wikmark Y, Engström K, Nyhlen J, Bäckvall JE: Combinatorial reshaping of the Candida antarctica lipase A substrate pocket for enantioselectivity using an extremely condensed library. Proc Natl Acad Sci U S A 2012, 109(1):78–83. 10.1073/pnas.1111537108
PubMed Central
PubMed
Google Scholar
Siedler S, Schendzielorz G, Binder S, Eggeling L, Bringer S, Bott M: SoxR as a single-cell biosensor for NADPH-consuming enzymes in Escherichia coli . ACS Synth Biol 2014, 3(1):41–47. 10.1021/sb400110j
CAS
PubMed
Google Scholar
Theobald U, Mailinger W, Baltes M, Rizzi M, Reuss M: In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae : I. Experimental observations. Biotechnol Bioeng 1997, 55(2):305–316. 10.1002/(SICI)1097-0290(19970720)55:2<305::AID-BIT8>3.0.CO;2-M
CAS
PubMed
Google Scholar
Träff KL, Jönsson LJ, Hahn-Hägerdal B: Putative xylose and arabinose reductases in Saccharomyces cerevisiae . Yeast 2002, 19(14):1233–1241. 10.1002/yea.913
PubMed
Google Scholar
Valadi A, Granath K, Gustafsson L, Adler L: Distinct intracellular localization of Gpd1p and Gpd2p, the two yeast isoforms of NAD+-dependent glycerol-3-phosphate dehydrogenase, explains their different contributions to redox-driven glycerol production. J Biol Chem 2004, 279(38):39677–39685. 10.1074/jbc.M403310200
CAS
PubMed
Google Scholar
Valkonen M, Mojzita D, Penttila M, Bencina M: Noninvasive high-throughput single-cell analysis of the intracellular pH of Saccharomyces cerevisiae by ratiometric flow cytometry. Appl Environ Microbiol 2013, 79(23):7179–7187. 10.1128/AEM.02515-13
PubMed Central
CAS
PubMed
Google Scholar
van Dijken JP, Scheffers WA: Redox balances in the metabolism of sugars by yeasts. FEMS Microbiol Lett 1986, 32(3-4):199–224. 10.1111/j.1574-6968.1986.tb01194.x
CAS
Google Scholar
Veech RL, Eggleston LV, Krebs HA: The redox state of free nicotinamide-adenine dinucleotide phosphate in the cytoplasm of rat liver. Biochem J 1969, 115(4):609–619.
PubMed Central
CAS
PubMed
Google Scholar
Williamson DH, Lund P, Krebs HA: The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem J 1967, 103(2):514–527.
PubMed Central
CAS
PubMed
Google Scholar
Zacharias DA, Tsien RY: Molecular Biology and Mutation of Green Fluorescent Protein. Green Fluorescent Protein. John Wiley & Sons, Inc., In; 2005.
Google Scholar
Zhang Q, Piston DW, Goodman RH: Regulation of corepressor function by nuclear NADH. Science 2002, 295(5561):1895–1897.
CAS
PubMed
Google Scholar