Akutsu T, Miyano S, Kuhara S: Identification of genetic networks from a small number of gene expression patterns under the Boolean network model. In Pacific Symposium on Biocomputing. Volume 4. World Scientific Computing, Singapore; 1999:17–28.
Google Scholar
Akutsu T, Miyano S, Kuhara S: Inferring qualitative relations in genetic networks and metabolic pathways. Bioinformatics 2000,16(8):727–734.
CAS
Google Scholar
Albert R, Wang R: Discrete dynamic modeling of cellular signaling networks. Methods Enzymol 2009, 467: 281–306.
CAS
Google Scholar
Aldridge B, Burke J, Lauffenburger D, Sorger P: Physicochemical modelling of cell signalling pathways. Nat Cell Biol 2006,8(11):1195–1203.
CAS
Google Scholar
Alur R, Henzinger T: Reactive modules. Lect Notes Comput Sc 1999,15(1):7–48.
Google Scholar
An G: A model of TLR4 signaling and tolerance using a qualitative, particle-event-based method: introduction of spatially configured stochastic reaction chambers (SCSRC). Math Biosci 2009,217(1):43–52.
CAS
Google Scholar
Andrianantoandro E, Basu S, Karig D, Weiss R: Synthetic biology: new engineering rules for an emerging discipline. Mol Syst Biol 2006.,2(1):
Assenov Y, Ramirez F, Schelhorn S, Lengauer T, Albrecht M: Computing topological parameters of biological networks. Bioinformatics 2008,24(2):282–284.
CAS
Google Scholar
Auliac C, Frouin V, Gidrol X, D'Alché-Buc F, et al.: Evolutionary approaches for the reverse-engineering of gene regulatory networks: A study on a biologically realistic dataset. BMC Bioinf 2008,9(1):91.
Google Scholar
Barabási A, Oltvai Z: Network biology: understanding the cell's functional organization. Nat Rev Genet 2004,5(2):101–113.
Google Scholar
Barua D, Faeder J, Haugh J: Structure-based kinetic models of modular signaling protein function: focus on Shp2. Biophys J 2007,92(7):2290–2300.
CAS
PubMed Central
Google Scholar
Barua D, Faeder J, Haugh J: Computational models of tandem Src homology 2 domain interactions and application to phosphoinositide 3-kinase. J Biol Chem 2008,283(12):7338–7345.
CAS
PubMed Central
Google Scholar
Barua D, Faeder J, Haugh J: A Bipolar Clamp Mechanism for Activation of Jak-Family Protein Tyrosine Kinases. PLoS Comput Biol 2009,5(4):e1000364.
PubMed Central
Google Scholar
Batt G, Ropers D, De Jong H, Geiselmann J, Mateescu R, Page M, Schneider D: Validation of qualitative models of genetic regulatory networks by model checking: Analysis of the nutritional stress response in Escherichia coli. Bioinformatics 2005,21(Suppl 1):i19-i28.
CAS
Google Scholar
Blinov M, Faeder J, Goldstein B, Hlavacek W: BioNetGen: software for rule-based modeling of signal trans-duction based on the interactions of molecular domains. Bioinformatics 2004,20(17):3289–3291.
CAS
Google Scholar
Blinov M, Faeder J, Goldstein B, Hlavacek W: A network model of early events in epidermal growth factor receptor signaling that accounts for combinatorial complexity. Biosystems 2006,83(2–3):136–151.
CAS
Google Scholar
Breitling R, Gilbert D, Heiner M, Orton R: A structured approach for the engineering of biochemical network models, illustrated for signalling pathways. Brief Bioinform 2008,9(5):404–421.
CAS
Google Scholar
Burgard A, Pharkya P, Maranas C: Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng 2003,84(6):647–657.
CAS
Google Scholar
Calder M, Gilmore S, Hillston J: Automatically deriving ODEs from process algebra models of signalling pathways. In Computational Methods in Systems Biology. Springer, Berlin Heidelberg; 2005:204–215.
Google Scholar
Calzone L, Fages F, Soliman S: BIOCHAM: an environment for modeling biological systems and formalizing experimental knowledge. Bioinformatics 2006,22(14):1805.
CAS
Google Scholar
Cao H, Romero-Campero F, Heeb S, Cámara M, Krasnogor N: Evolving cell models for systems and synthetic biology. Syst Synth Biol 2010,4(1):55–84.
PubMed Central
Google Scholar
Cardelli L: Brane calculi. In Computational Methods in Systems Biology. Springer, Berlin Heidelberg; 2005:257–278.
Google Scholar
Centler F, Fenizio P, Matsumaru N, Dittrich P: Chemical organizations in the central sugar metabolism of Escherichia coli. Math Model Biol Syst 2007,1(2):105–119.
Google Scholar
Centler F, Kaleta C, Di Fenizio P, Dittrich P: Computing chemical organizations in biological networks. Bioinformatics 2008,24(14):1611–1618.
CAS
Google Scholar
Chaouiya C, Remy E, Ruet P, Thieffry D: Qualitative modelling of genetic networks: From logical regulatory graphs to standard petri nets. Lect Notes Comput Sc 2004, 3099: 137–156.
Google Scholar
Chaouiya C, Remy E, Thieffry D: Petri net modelling of biological regulatory networks. J Discrete Algorithms 2008,6(2):165–177.
Google Scholar
Chassagnole C, Noisommit-Rizzi N, Schmid J, Mauch K, Reuss M: Dynamic modeling of the central carbon metabolism of Escherichia coli. Biotechnol Bioeng 2002,79(1):53–73.
CAS
Google Scholar
Chen L, Qi-Wei G, Nakata M, Matsuno H, Miyano S: Modelling and simulation of signal transductions in an apoptosis pathway by using timed Petri nets. J Biosci 2007,32(1):113–127.
Google Scholar
Chen T, He H, Church G: Modeling Gene Expression with Differential Equations. In Pacific Symposium on Biocomputing. World Scientific Computing, Singapore; 1999:29–40.
Google Scholar
Cheng C, Hu Y: Extracting the abstraction pyramid from complex networks. BMC Bioinf 2010,11(1):411.
Google Scholar
Ciocchetta F, Hillston J: Bio-PEPA: an extension of the process algebra PEPA for biochemical networks. Electron Notes Theor Comput Sci 2008,194(3):103–117.
Google Scholar
Ciocchetta F, Hillston J: Bio-PEPA: a framework for the modelling and analysis of biological systems. Theor Comput Sci 2009,410(33–34):3065–3084.
Google Scholar
Colvin J, Monine M, Faeder J, Hlavacek W, Von Hoff D, Posner R: Simulation of large-scale rule-based models. Bioinformatics 2009,25(7):910–917.
CAS
PubMed Central
Google Scholar
Colvin J, Monine M, Gutenkunst R, Hlavacek W, Von Hoff D, Posner R: RuleMonkey: software for stochastic simulation of rule-based models. BMC Bioinf 2010,11(1):404.
Google Scholar
Corne D, Frisco P: Dynamics of HIV infection studied with cellular automata and conformon-P systems. Biosystems 2008,91(3):531–544.
CAS
Google Scholar
Costa M, Radhakrishnan K, Wilson B, Vlachos D, Edwards J, Jonsson H: Coupled stochastic spatial and non-spatial simulations of ErbB1 signaling pathways demonstrate the importance of spatial organization in signal transduction. PLoS ONE 2009, 4: e6316.
PubMed Central
Google Scholar
Costa R, Machado D, Rocha I, Ferreira E: Hybrid dynamic modeling of Escherichia coli central metabolic network combining Michaelis-Menten and approximate kinetic equations. Biosystems 2010,100(2):150–157.
CAS
Google Scholar
Covert M, Palsson B: Transcriptional regulation in constraints-based metabolic models of Escherichia coli. J Biol Chem 2002,277(31):28058–28064.
CAS
Google Scholar
Covert M, Xiao N, Chen T, Karr J: Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli. Bioinformatics 2008,24(18):2044–2050.
CAS
Google Scholar
Damm W, Harel D: LSCs: Breathing life into message sequence charts. Lect Notes Comput Sc 2001,19(1):45–80.
Google Scholar
Danos V, Feret J, Fontana W, Harmer R: Rule-Based Modelling of Cellular Signalling. In CONCUR 2007 - Concurrency Theory. Volume 4703. Springer, Berlin Heidelberg; 2007:17–41.
Google Scholar
Danos V, Feret J, Fontana W, Harmer R, Krivine J: Rule-based modelling and model perturbation. T Comput Syst Biol XI 2009, 5750: 116–137.
Google Scholar
Danos V, Krivine J: Formal molecular biology done in CCS-R. Electron Notes Theor Comput Sci 2007,180(3):31–49.
Google Scholar
Danos V, Laneve C: Formal molecular biology. Theor Comput Sci 2004,325(1):69–110.
Google Scholar
De Jong H, Gouzé J, Hernandez C, Page M, Sari T, Geiselmann J: Qualitative simulation of genetic regulatory networks using piecewise-linear models. Bull Math Biol 2004,66(2):301–340.
Google Scholar
Dematte L, Priami C, Romanel A, Soyer O: Evolving BlenX programs to simulate the evolution of biological networks. Theor Comput Sci 2008,408(1):83–96.
Google Scholar
D'haeseleer P, Liang S, Somogyi R: Genetic network inference: from co-expression clustering to reverse engineering. Bioinformatics 2000,16(8):707–726.
Google Scholar
Dhurjati P, Ramkrishna D, Flickinger M, Tsao G: A cybernetic view of microbial growth: modeling of cells as optimal strategists. Biotechnol Bioeng 1985,27(1):1–9.
CAS
Google Scholar
Dittrich P, Di Fenizio P: Chemical organisation theory. Bull Math Biol 2007,69(4):1199–1231.
CAS
Google Scholar
Dojer N, Gambin A, Mizera A, Wilczyński B, Tiuryn J: Applying dynamic Bayesian networks to perturbed gene expression data. BMC Bioinf 2006,7(1):249.
Google Scholar
Durzinsky M, Wagler A, Marwan W: Reconstruction of extended Petri nets from time series data and its application to signal transduction and to gene regulatory networks. BMC Syst Biol 2011,5(1):113.
PubMed Central
Google Scholar
Efroni S, Harel D, Cohen I: Toward rigorous comprehension of biological complexity: modeling, execution, and visualization of thymic T-cell maturation. Genome Res 2003,13(11):2485–2497.
CAS
PubMed Central
Google Scholar
Emonet T, Macal C, North M, Wickersham C, Cluzel P: AgentCell: a digital single-cell assay for bacterial chemotaxis. Bioinformatics 2005,21(11):2714.
CAS
Google Scholar
Engelberg J, Ropella G, Hunt C: Essential operating principles for tumor spheroid growth. BMC Syst Biol 2008,2(1):110.
PubMed Central
Google Scholar
Ermentrout G, Edelstein-Keshet L: Cellular Automata Approaches to Biological Modeling. J Theor Biol 1993,160(1):97–133.
CAS
Google Scholar
Feist A, Herrgård M, Thiele I, Reed J, Palsson B: Reconstruction of biochemical networks in microorganisms. Nat Rev Microbiol 2008,7(2):129–143.
PubMed Central
Google Scholar
Feret J, Danos V, Krivine J, Harmer R, Fontana W: Internal coarse-graining of molecular systems. Proc Natl Acad Sci USA 2009,106(16):6453.
CAS
PubMed Central
Google Scholar
Finney A, Hucka M: Systems biology markup language: Level 2 and beyond. Biochem Soc Trans 2003, 31: 1472–1473.
CAS
Google Scholar
Fisher J, Henzinger T: Executable cell biology. Nat Biotechnol 2007,25(11):1239–1249.
CAS
Google Scholar
Fisher J, Piterman N, Hajnal A, Henzinger T: Predictive Modeling of Signaling Crosstalk during C. elegans Vulval Development. PLoS Comput Biol 2007,3(5):e92.
PubMed Central
Google Scholar
Fisher J, Piterman N, Hubbard E, Stern M, Harel D: Computational insights into Caenorhabditis elegans vulval development. Proc Natl Acad Sci USA 2005,102(6):1951–1956.
CAS
PubMed Central
Google Scholar
Friedman N: Inferring cellular networks using probabilistic graphical models. Science 2004,303(5659):799–805.
CAS
Google Scholar
Funahashi A, Morohashi M, Kitano H, Tanimura N: CellDesigner: a process diagram editor for gene-regulatory and biochemical networks. BIOSILICO 2003,1(5):159–162.
Google Scholar
Ghosh R, Tomlin C: Lateral inhibition through delta-notch signaling: A piecewise affine hybrid model. Lect Notes Comput Sc 2001, 2034: 232–246.
Google Scholar
Ghosh R, Tomlin C: Symbolic reachable set computation of piecewise affine hybrid automata and its application to biological modelling: Delta-Notch protein signalling. Syst Biol 2004,1(1):170–183.
CAS
Google Scholar
Gianchandani E, Joyce A, Palsson B, Papin J: Functional States of the Genome-Scale Escherichia coli Tran-scriptional Regulatory System. PLoS Comput Biol 2009,5(6):e1000403.
PubMed Central
Google Scholar
Gianchandani E, Papin J, Price N, Joyce A, Palsson B: Matrix Formalism to Describe Functional States of Transcriptional Regulatory Systems. PLoS Comput Biol 2006,2(8):e101.
PubMed Central
Google Scholar
Gilbert D, Heiner M: From Petri Nets to Differential Equations-An Integrative Approach for Biochemical Network Analysis. In Petri nets and other models of concurrency, ICATPN 2006. Volume 4024. Springer, Berlin Heidelberg; 2006:181–200.
Google Scholar
Goldenfeld N: Simple lessons from complexity. Science 1999,284(5411):87–89.
Google Scholar
Gomperts B, Kramer I, Tatham P: Signal transduction. Academic Press; 2009.
Google Scholar
Gonzalez P, Cardenas M, Camacho D, Franyuti A, Rosas O, Lagunez-Otero J: Cellulat: an agent-based intracellular signalling model. Biosystems 2003,68(2–3):171–185.
Google Scholar
Grant M, Mostov K, Tlsty T, Hunt C: Simulating Properties of in vitro Epithelial Cell Morphogenesis. PLoS Comput Biol 2006,2(10):e129.
PubMed Central
Google Scholar
Gruenert G, Ibrahim B, Lenser T, Lohel M, Hinze T, Dittrich P: Rule-based spatial modeling with diffusing, geometrically constrained molecules. BMC Bioinf 2010,11(1):307.
Google Scholar
Grzegorczyk M, Husmeier D, Edwards K, Ghazal P, Millar A: Modelling non-stationary gene regulatory processes with a non-homogeneous Bayesian network and the allocation sampler. Bioinformatics 2008,24(18):2071–2078.
CAS
Google Scholar
Gupta S, Bisht S, Kukreti R, Jain S, Brahmachari S: Boolean network analysis of a neurotransmitter signaling pathway. J Theor Biol 2007,244(3):463–469.
CAS
Google Scholar
Hardy S, Robillard P: Petri net-based method for the analysis of the dynamics of signal propagation in signaling pathways. Bioinformatics 2008,24(2):209–217.
CAS
Google Scholar
Harel D: Statecharts: A visual formalism for complex systems. Sci Comput Program 1987,8(3):231–274.
Google Scholar
Hartwell L, Hopfield J, Leibler S, Murray A: From molecular to modular cell biology. Nature 1999, 402: C47-C52.
CAS
Google Scholar
Heijnen J: Approximative kinetic formats used in metabolic network modeling. Biotechnol Bioeng 2005,91(5):534–545.
CAS
Google Scholar
Hlavacek W, Faeder J, Blinov M, Perelson A, Goldstein B: The complexity of complexes in signal transduction. Biotechnol Bioeng 2003,84(7):783–794.
CAS
Google Scholar
Horn F, Jackson R: General mass action kinetics. Arch Ration Mech An 1972,47(2):81–116.
Google Scholar
Hucka M, Bergmann F, Hoops S, Keating S, Sahle S, Schaff J, Smith L, Wilkinson D: The Systems Biology Markup Language (SBML): Language Specification for Level 3 Version 1 Core. Nat Precedings 2010.
Google Scholar
Hucka M, Finney A, Sauro H, Bolouri H, Doyle J, Kitano H, Arkin A, Bornstein B, Bray D, Cornish-Bowden A, et al.: The Systems Biology Markup Language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 2003,19(4):524–531.
CAS
Google Scholar
Hunt C, Ropella G, Park S, Engelberg J: Dichotomies between computational and mathematical models. Nat Biotechnol 2008,26(7):737–738.
CAS
Google Scholar
Husmeier D: Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 2003,19(17):2271–2282.
CAS
Google Scholar
Iba H: Inference of differential equation models by genetic programming. Inf Sci 2008,178(23):4453–4468.
Google Scholar
Jamshidi N, Edwards J, Fahland T, Church G, Palsson B: Dynamic simulation of the human red blood cell metabolic network. Bioinformatics 2001,17(3):286–287.
CAS
Google Scholar
Jamshidi N, Palsson B: Mass action stoichiometric simulation models: Incorporating kinetics and regulation into stoichiometric models. Biophys J 2010, 98: 175–185.
CAS
PubMed Central
Google Scholar
Jeong H, Tombor B, Albert R, Oltvai Z, Barabási A: The large-scale organization of metabolic networks. Nature 2000,407(6804):651–654.
CAS
Google Scholar
John M, Ewald R, Uhrmacher A: A spatial extension to the π-Calculus. Electron Notes Theor Comput Sci 2008,194(3):133–148.
Google Scholar
Kaleta C, Centler F, Di Fenizio P, Dittrich P: Phenotype prediction in regulated metabolic networks. BMC Syst Biol 2008,2(1):37.
PubMed Central
Google Scholar
Kaleta C, Richter S, Dittrich P: Using chemical organization theory for model checking. Bioinformatics 2009,25(15):1915–1922.
CAS
PubMed Central
Google Scholar
Kam N, Cohen I, Harel D: The Immune System as a Reactive System: Modeling T Cell Activation With Stat-echarts. In Proceedings of the IEEE 2001 Symposia on Human Centric Computing Languages and Environments (HCC'01). Stresa, Italy; 2001:15–22.
Google Scholar
Karlebach G, Shamir R: Modelling and analysis of gene regulatory networks. Nat Rev Mol Cell Biol 2008,9(10):770–780.
CAS
Google Scholar
Kauffman K, Prakash P, Edwards J: Advances in flux balance analysis. Curr Opin Biotechnol 2003,14(5):491–496.
CAS
Google Scholar
Kauffman S: Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol 1969,22(3):437–467.
CAS
Google Scholar
Kier L, Bonchev D, Buck G: Modeling biochemical networks: a cellular-automata approach. Chem Biodivers 2005,2(2):233–243.
Google Scholar
Kim J, Varner J, Ramkrishna D: A hybrid model of anaerobic E. coli GJT001: Combination of elementary flux modes and cybernetic variables. Biotechnol Prog 2008,24(5):993–1006.
CAS
Google Scholar
Kim S, Imoto S, Miyano S: Inferring gene networks from time series microarray data using dynamic Bayesian networks. Brief Bioinform 2003,4(3):228–235.
CAS
Google Scholar
Kimura S, Ide K, Kashihara A, Kano M, Hatakeyama M, Masui R, Nakagawa N, Yokoyama S, Kuramitsu S, Kon-agaya A: Inference of S-system models of genetic networks using a cooperative coevolutionary algorithm. Bioinformatics 2005,21(7):1154–1163.
CAS
Google Scholar
Kitano H: Systems Biology: A Brief Overview. Science 2002,295(5560):1662–1664.
CAS
Google Scholar
Kitano H, Funahashi A, Matsuoka Y, Oda K: Using process diagrams for the graphical representation of biological networks. Nat Biotechnol 2005,23(8):961–966.
CAS
Google Scholar
Klamt S, Saez-Rodriguez J, Lindquist J, Simeoni L, Gilles E: A methodology for the structural and functional analysis of signaling and regulatory networks. BMC Bioinf 2006,7(1):56.
Google Scholar
Klann M, Lapin A, Reuss M: Agent-based simulation of reactions in the crowded and structured intracellular environment: Influence of mobility and location of the reactants. BMC Syst Biol 2011,5(1):71.
PubMed Central
Google Scholar
Koch I, Junker B, Heiner M: Application of Petri net theory for modelling and validation of the sucrose breakdown pathway in the potato tuber. Bioinformatics 2005,21(7):1219–1226.
CAS
Google Scholar
Kohn K: Molecular interaction map of the mammalian cell cycle control and DNA repair systems. Mol Biol Cell 1999,10(8):2703–2734.
CAS
PubMed Central
Google Scholar
Kohn K, Aladjem M, Kim S, Weinstein J, Pommier Y: Depicting combinatorial complexity with the molecular interaction map notation. Mol Syst Biol 2006.,2(51):
Kompala D, Ramkrishna D, Tsao G: Cybernetic modeling of microbial growth on multiple substrates. Biotech-nol Bioeng 1984,26(11):1272–1281.
CAS
Google Scholar
Küffner R, Zimmer R, Lengauer T: Pathway analysis in metabolic databases via differential metabolic display (DMD). Bioinformatics 2000,16(9):825–836.
Google Scholar
Le Novère N, Hucka M, Mi H, Moodie S, Schreiber F, Sorokin A, Demir E, Wegner K, Aladjem M, Wimalaratne S, et al.: The systems biology graphical notation. Nat Biotechnol 2009,27(8):735–741.
Google Scholar
Lee J, Gianchandani E, Eddy J, Papin J: Dynamic Analysis of Integrated Signaling, Metabolic, and Regulatory Networks. PLoS Comput Biol 2008,4(5):e1000086.
Google Scholar
Lee J, Gianchandani E, Eddy J, Papin J: Dynamic analysis of integrated signaling, metabolic, and regulatory networks. PLoS Comput Biol 2008,4(5):e1000086.
Google Scholar
Li F, Long T, Lu Y, Ouyang Q, Tang C: The yeast cell-cycle network is robustly designed. Proc Natl Acad Sci USA 2004,101(14):4781–4786.
CAS
PubMed Central
Google Scholar
Li N, Verdolini K, Clermont G, Mi Q, Rubinstein E, Hebda P, Vodovotz Y: A patient-specific in silico model of inflammation and healing tested in acute vocal fold injury. PLoS ONE 2008,3(7):e2789.
PubMed Central
Google Scholar
Liebermeister W, Klipp E: Bringing metabolic networks to life: convenience rate law and thermodynamic constraints. Theor Biol Med Model 2006,3(1):1–13.
Google Scholar
Lloyd C, Halstead M, Nielsen P: CellML: its future, present and past. Prog Biophys Mol Biol 2004,85(2–3):433–450.
CAS
Google Scholar
Lollini P, Motta S, Pappalardo F: Discovery of cancer vaccination protocols with a genetic algorithm driving an agent based simulator. BMC Bioinf 2006,7(1):352.
Google Scholar
Luna A, Karac E, Sunshine M, Chang L, Nussinov R, Aladjem M, Kohn K: A formal MIM specification and tools for the common exchange of MIM diagrams: an XML-Based format, an API, and a validation method. BMC Bioinf 2011,12(1):167.
Google Scholar
Materi W, Wishart D: Computational systems biology in drug discovery and development: methods and applications. Drug Discov Today 2007,12(7–8):295–303.
CAS
Google Scholar
Merelli E, Armano G, Cannata N, Corradini F, d'Inverno M, Doms A, Lord P, Martin A, Milanesi L, Moller S, et al.: Agents in bioinformatics, computational and systems biology. Brief Bioinform 2007,8(1):45–59.
CAS
Google Scholar
Milner R: A calculus of communicating systems. Springer; 1980.
Google Scholar
Milner R, Parrow J, Walker D: A calculus of mobile processes. I. Inf Comput 1992,100(1):1–40.
Google Scholar
Morris M, Saez-Rodriguez J, Sorger P, Lauffenburger D: Logic-based models for the analysis of cell signaling networks. Biochemistry 2010,49(15):3216–3224.
CAS
PubMed Central
Google Scholar
Nagasaki M, Onami S, Miyano S, Kitano H: Bio-calculus: Its Concept and Molecular Interaction. In Genome informatics. Workshop on Genome Informatics. Volume 10. Universal Academic Press, Tokyo; 1999:133–143.
Google Scholar
Noble D: The rise of computational biology. Nat Rev Mol Cell Biol 2002,3(6):459–463.
Google Scholar
Nummela J, Julstrom B: Evolving petri nets to represent metabolic pathways. In Proceedings of the 2005 conference on genetic and evolutionary computation. ACM, New York; 2005:2133–2139.
Google Scholar
Orth J, Conrad T, Na J, Lerman J, Nam H, Feist A, Palsson B: A comprehensive genome-scale reconstruction of Escherichia coli metabolism -- 2011. Mol Syst Biol 2011.,7(1):
Palsson B: Systems Biology: Properties of Reconstructed Networks. Cambridge University Press; 2006.
Google Scholar
Papin J, Hunter T, Palsson B, Subramaniam S: Reconstruction of cellular signalling networks and analysis of their properties. Nat Rev Mol Cell Biol 2005,6(2):99–111.
CAS
Google Scholar
Patil K, Rocha I, Forster J, Nielsen J: Evolutionary programming as a platform for in silico metabolic engineering. BMC Bioinf 2005,6(1):308.
Google Scholar
Paun G: Computing with membranes. J Comput Syst Sci 2000,61(1):108–143.
Google Scholar
Pavlopoulos G, Wegener A, Schneider R: A survey of visualization tools for biological network analysis. Biodata mining 2008,1(1):12.
PubMed Central
Google Scholar
Pearl J: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers Inc; 1988.
Google Scholar
Pedersen M, Plotkin G: A language for biochemical systems: Design and formal specification. T Comput Syst Biol XII 2010, 5945: 77–145.
Google Scholar
Pena J, Bjorkegren J, Tegnér J: Growing Bayesian network models of gene networks from seed genes. Bioin-formatics 2005,21(Suppl 2):224–229.
Google Scholar
Pérez-Jiménez M, Romero-Campero F: P systems, a new computational modelling tool for systems biology. T Comput Syst Biol VI 2006, 4220: 176–197.
Google Scholar
Petri C: Kommunikation mit Automaten. Ph.D. thesis, Rheinisch-Westfälisches Institut f. instrumentelle Mathematik an d. Univ; 1962.
Google Scholar
Pogson M, Holcombe M, Smallwood R, Qwarnstrom E: Introducing Spatial Information into Predictive NF-κB Modelling-An Agent-Based Approach. PLoS ONE 2008,3(6):e2367.
PubMed Central
Google Scholar
Pogson M, Smallwood R, Qwarnstrom E, Holcombe M: Formal agent-based modelling of intracellular chemical interactions. Biosystems 2006,85(1):37–45.
CAS
Google Scholar
Priami C, Ballarini P, Quaglia P: BlenX4Bio-BlenX for Biologists. In Computational Methods in Systems Biology. Springer, Berlin Heidelberg; 2009:26–51.
Google Scholar
Priami C, Quaglia P: Beta binders for biological interactions. In Computational Methods in Systems Biology. Springer, Berlin Heidelberg; 2005:20–33.
Google Scholar
Priami C, Regev A, Shapiro E, Silverman W: Application of a stochastic name-passing calculus to representation and simulation of molecular processes. Inf Process Lett 2001,80(1):25–31.
Google Scholar
Price N, Papin J, Schilling C, Palsson B: Genome-scale microbial in silico models: the constraints-based approach. Trends Biotechnol 2003,21(4):162–169.
CAS
Google Scholar
Ravasz E, Somera A, Mongru D, Oltvai Z, Barabási A: Hierarchical organization of modularity in metabolic networks. Science 2002,297(5586):1551–1555.
CAS
Google Scholar
Reddy V, Mavrovouniotis M, Liebman M: Petri Net Representations in Metabolic Pathways. In: Proceedings of the 1st International Conference on Intelligent Systems for Molecular Biology. AAAI/MIT Press, Menlo Park, CA; 1993:328–336.
Google Scholar
Reed J, Palsson B: Thirteen years of building constraint-based in silico models of Escherichia coli. J Bacteriol 2003,185(9):2692–2699.
CAS
PubMed Central
Google Scholar
Regev A, Panina E, Silverman W, Cardelli L, Shapiro E: BioAmbients: an abstraction for biological compartments. Theor Comput Sci 2004,325(1):141–167.
Google Scholar
Regev A, Silverman W, Shapiro E: Representing biomolecular processes with computer process algebra: π-calculus programs of signal transduction pathways. In Proceedings of Pacific Symposium of Biocomputing. World Scientific Press, Singapore; 2000.
Google Scholar
Regev A, Silverman W, Shapiro E: Representation and simulation of biochemical processes using the-calculus process algebra. In Pacific Symposium on Biocomputing. Volume 6. World Scientific Press, Singapore; 2001:459–470.
Google Scholar
Rizzi M, Baltes M, Theobald U, Reuss M: In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: II. mathematical model. Biotechnol Bioeng 1997,55(4):592–608.
CAS
Google Scholar
Sachs K, Gifford D, Jaakkola T, Sorger P, Lauffenburger D: Bayesian network approach to cell signaling pathway modeling. Sci STKE 2002,2002(148):pe38.
Google Scholar
Sachs K, Perez O, Pe'er D, Lauffenburger D, Nolan G: Causal protein-signaling networks derived from multi-parameter single-cell data. Science 2005,308(5721):523–529.
CAS
Google Scholar
Sackmann A, Heiner M, Koch I: Application of Petri net based analysis techniques to signal transduction pathways. BMC Bioinf 2006,7(1):482.
Google Scholar
Saez-Rodriguez J, Simeoni L, Lindquist J, Hemenway R, Bommhardt U, Arndt B, Haus U, Weismantel R, Gilles E, Klamt S, Schraven B: A logical model provides insights into T cell receptor signaling. PLoS Comput Biol 2007,3(8):e163.
PubMed Central
Google Scholar
Savageau M, Voit E: Recasting nonlinear differential equations as S-systems: a canonical nonlinear form. Math Biosci 1987,87(1):83–115.
Google Scholar
Schilling C, Letscher D, Palsson B: Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. J Theor Biol 2000,203(3):229–248.
CAS
Google Scholar
Schlitt T, Brazma A: Current approaches to gene regulatory network modelling. BMC Bioinf 2007,8(Suppl 6):S9.
Google Scholar
Schuster S, Dandekar T, Fell D: Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. Trends Biotechnol 1999,17(2):53–60.
CAS
Google Scholar
Schuster S, Pfeiffer T, Moldenhauer F, Koch I, Dandekar T: Exploring the pathway structure of metabolism: decomposition into subnetworks and application to Mycoplasma pneumoniae. Bioinformatics 2002,18(2):351–361.
CAS
Google Scholar
Segovia-Juarez J, Ganguli S, Kirschner D: Identifying control mechanisms of granuloma formation during M. tuberculosis infection using an agent-based model. J Theor Biol 2004,231(3):357–376.
CAS
Google Scholar
Segrè D, Vitkup D, Church G: Analysis of optimality in natural and perturbed metabolic networks. Proc Natl Acad Sci USA 2002,99(23):15112–15117.
PubMed Central
Google Scholar
Setty Y, Cohen I, Dor Y, Harel D: Four-dimensional realistic modeling of pancreatic organogenesis. Proc Natl Acad Sci USA 2008,105(51):20374–20379.
CAS
PubMed Central
Google Scholar
Shlomi T, Berkman O, Ruppin E: Regulatory on/off minimization of metabolic flux changes after genetic perturbations. Proc Natl Acad Sci USA 2005,102(21):7695–7700.
CAS
PubMed Central
Google Scholar
Shlomi T, Eisenberg Y, Sharan R, Ruppin E: A genome-scale computational study of the interplay between transcriptional regulation and metabolism. Mol Syst Biol 2007.,3(1):
Shmulevich I, Dougherty E, Kim S, Zhang W: Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics 2002,18(2):261–274.
CAS
Google Scholar
Simao E, Remy E, Thieffry D, Chaouiya C: Qualitative modelling of regulated metabolic pathways: application to the tryptophan biosynthesis. E coli Bioinformatics 2005,21(suppl 2):190–196.
Google Scholar
Smallbone K, Simeonidis E, Broomhead D, Kell D: Something from nothing - bridging the gap between constraint-based and kinetic modelling. FEBS J 2007,274(21):5576–5585.
CAS
Google Scholar
Smallbone K, Simeonidis E, Swainston N, Mendes P: Towards a genome-scale kinetic model of cellular metabolism. BMC Syst Biol 2010,4(1):6.
PubMed Central
Google Scholar
Sozinova O, Jiang Y, Kaiser D, Alber M: A three-dimensional model of myxobacterial aggregation by contact-mediated interactions. Proc Natl Acad Sci USA 2005,102(32):11308–11312.
CAS
PubMed Central
Google Scholar
Steggles L, Banks R, Shaw O, Wipat A: Qualitatively modelling and analysing genetic regulatory networks: a Petri net approach. Bioinformatics 2007,23(3):336–343.
CAS
Google Scholar
Stephanopoulos G: Metabolic engineering. Biotechnol Bioeng 1998,58(2–3):119–120.
CAS
Google Scholar
Steuer R, Junker B: Computational models of metabolism: Stability and regulation in metabolic networks. Volume 142. John Wiley & Sons, Inc; 2008.
Google Scholar
Takahashi K, Arjunan S, Tomita M: Space in systems biology of signaling pathways-towards intracellular molecular crowding in silico. FEBS Lett 2005,579(8):1783–1788.
CAS
Google Scholar
Teusink B, Passarge J, Reijenga C, Esgalhado E, Van Der Weijden C, Schepper M, Walsh M, Bakker B, Van Dam K, Westerhoff H, et al.: Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. Eur J Biochem 2000,267(17):5313–5329.
CAS
Google Scholar
Thorne B, Bailey A, Peirce S: Combining experiments with multi-cell agent-based modeling to study biological tissue patterning. Brief Bioinform 2007,8(4):245–257.
CAS
Google Scholar
Turing A: The Chemical Basis of Morphogenesis. Philos Trans R Soc Lond B Biol Sci 1952,237(641):37–72.
Google Scholar
Turner T, Schnell S, Burrage K: Stochastic approaches for modelling in vivo reactions. Comput Biol Chem 2004,28(3):165–178.
CAS
Google Scholar
Tyson J, Chen K, Novak B: Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol 2003,15(2):221–231.
CAS
Google Scholar
Varma A, Palsson B: Metabolic flux balancing: basic concepts, scientific and practical use. Nat Biotechnol 1994,12(10):994–998.
CAS
Google Scholar
Visser D, Heijnen J: Dynamic simulation and metabolic re-design of a branched pathway using linlog kinetics. Metab Eng 2003,5(3):164–176.
CAS
Google Scholar
Vohradsky J: Neural network model of gene expression. FASEB J 2001,15(3):846–854.
CAS
Google Scholar
Von Neumann J, Burks A: Theory of self-reproducing automata. University of Illinois Press; 1966.
Google Scholar
Walker D, Southgate J: The virtual cell -- a candidate co-ordinator for 'middle-out' modelling of biological systems. Brief Bioinform 2009,10(4):450.
CAS
Google Scholar
Weimar J: Cellular automata approaches to enzymatic reaction networks. Cellular Automata 2002, 2493: 294–303.
Google Scholar
Wiechert W: 13C metabolic flux analysis. Metab Eng 2001,3(3):195–206.
CAS
Google Scholar
Wishart D, Yang R, Arndt D, Tang P, Cruz J: Dynamic cellular automata: an alternative approach to cellular simulation. Silico Biol 2005,5(2):139–161.
CAS
Google Scholar
Wittmann D, Krumsiek J, Saez-Rodriguez J, Lauffenburger D, Klamt S, Theis F: Transforming Boolean models to continuous models: methodology and application to T-cell receptor signaling. BMC Syst Biol 2009,3(1):98.
PubMed Central
Google Scholar
Wu J, Voit E: Hybrid modeling in biochemical systems theory by means of functional petri nets. J Bioinform Comput Biol 2009,7(1):107–34.
CAS
Google Scholar
Wu J, Voit E: Integrative biological systems modeling: challenges and opportunities. Front Comput Sci Chin 2009,3(1):92–100.
Google Scholar
Wurthner J, Mukhopadhyay A, Peimann C: A cellular automaton model of cellular signal transduction. Comput Biol Med 2000,30(1):1–21.
CAS
Google Scholar
Yartseva A, Klaudel H, Devillers R, Képès F: Incremental and unifying modelling formalism for biological interaction networks. BMC Bioinf 2007,8(1):433.
Google Scholar
Young J, Henne K, Morgan J, Konopka A, Ramkrishna D: Integrating cybernetic modeling with pathway analysis provides a dynamic, systems-level description of metabolic control. Biotechnol Bioeng 2008,100(3):542–559.
CAS
Google Scholar
Zevedei-Oancea I, Schuster S: Topological analysis of metabolic networks based on Petri net theory. In Silico Biol 2003,3(3):323–345.
CAS
Google Scholar
Zhang L, Athale C, Deisboeck T: Development of a three-dimensional multiscale agent-based tumor model: simulating gene-protein interaction profiles, cell phenotypes and multicellular patterns in brain cancer. J Theor Biol 2007,244(1):96–107.
CAS
Google Scholar
Zorzenon dos Santos R, Coutinho S: Dynamics of HIV infection: A cellular automata approach. Phys Rev Lett 2001,87(16):168102.
CAS
Google Scholar
Zou M, Conzen S: A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics 2005,21(1):71–79.
CAS
Google Scholar