Abraham MM, Martin GA, Conchita T, Hortensia NB, Rachel M (2015) Potent anti-calmodulin activity of cyclotetradepsipeptides isolated from Isaria fumosorosea using a newly designed piosensor. Nat Prod Commun 10:113–116. https://doi.org/10.1177/1934578X1501000128
Article
Google Scholar
Adrien M, Geoffroy B, Vincent F, Andy M, Juliana AJ, Philippe N, Bronikowski AM, Morgan TJ, Theodore G, Carter PA (2017) Age-Related Changes in Locomotor Performance Reveal a Similar Pattern for Caenorhabditis elegans, Mus domesticus, Canis familiaris, Equus caballus, and Homo sapiens. J Gerontol A Biol Med 72:455–463. https://doi.org/10.1093/gerona/glw136
Article
CAS
Google Scholar
Ayer W, Craw P, Nozawa K (1991) Two 1 H-naphtho [2,3-c] pyran-1-one metabolites from the fungus Paecilomyces variotii. Can J Chem 69:189–191. https://doi.org/10.1002/chin.199127272
Article
CAS
Google Scholar
Azarcoya-Barrera J, Field CJ, Goruk S, Makarowski A, Curtis JM, Pouliot Y, Jacobs RL, Richard C (2021) Buttermilk: an important source of lipid soluble forms of choline that influences the immune system development in Sprague-Dawley rat offspring. Eur J Nutr 60:2807–2818. https://doi.org/10.1007/s00394-020-02462-3
Article
CAS
PubMed
Google Scholar
Bagli J, KluepfelSt.-Jacques DM (1973) Elucidation of structure and stereochemistry of myriocin. A novel antifungal antibiotic. J Org Chem 38:1253–1260. https://doi.org/10.1021/jo00947a001
Article
Google Scholar
Buchter C, Koch K, Freyer M, Baier S, Saier C, Honnen S, Watjen W (2020) The mycotoxin beauvericin impairs development, fertility and life span in the nematode Caenorhabditis elegans accompanied by increased germ cell apoptosis and lipofuscin accumulation. Toxicol Lett 334:102–109. https://doi.org/10.1016/j.toxlet.2020.09.016
Article
CAS
PubMed
Google Scholar
Calvo DR, Martorell P, Genovés S, Gosálbez L (2016) Development of novel functional ingredients: need for testing systems and solutions with Caenorhabditis elegans. Trends Food Sci Technol 54:197–203. https://doi.org/10.1016/j.tifs.2016.05.006
Article
CAS
Google Scholar
Chen Y, Onken B, Chen H, Xiao S, Liu X, Driscoll M, Cao Y, Huang Q (2014) Mechanism of longevity extension of caenorhabditis elegans induced by pentagalloyl glucose isolated from eucalyptus leaves. J Agric Food Chem 62:3422–3431. https://doi.org/10.1021/jf500210p
Article
CAS
PubMed
Google Scholar
Chen C, Xue T, Fan P, Meng L, Wei J, Luo D (2018) Cytotoxic activity of Shp2 inhibitor fumosorinone in human cancer cells. Oncol Lett 15:10055–10062. https://doi.org/10.3892/ol.2018.8593
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen B, Sun Y, Luo F, Wang C (2020) Bioactive metabolites and potential mycotoxins produced by Cordyceps fungi: a review of safety. Toxins 12:410. https://doi.org/10.3390/toxins12060410
Article
CAS
PubMed Central
Google Scholar
Daniela Š, Petr T, Alexandr J, Petr H (2020) Rapid methods for the separation of natural mixtures of beauverolides, cholesterol acyltransferase inhibitors, isolated from the fungus Isaria fumosorosea. J Sep Sci 43:962–969. https://doi.org/10.1002/jssc.201901084
Article
CAS
Google Scholar
Derbyshire E, Obeid R (2020) Choline, neurological development and brain function: a systematic review focusing on the first 1000 days. Nutrients 12:1731. https://doi.org/10.3390/nu12061731
Article
CAS
PubMed Central
Google Scholar
Furuya T, Mirotani M, Masuzawa M (1983) N6-(2-hydroxyethyl) adenosine a biologically active compound from cultured mycelia of Cordyceps and Isaria species. Phytochemisrry 22:2509–2512. https://doi.org/10.1016/0031-9422(83)80150-2
Article
CAS
Google Scholar
Gems D, Partridge L (2008) Stress-response hormesis and aging: “that which does not kill us makes us stronger.” Cell Metab 7:200–203. https://doi.org/10.1016/j.cmet.2008.01.001
Article
CAS
PubMed
Google Scholar
Gruber J, Ng LF, Poovathingal SK, Halliwell B (2009) Deceptively simple but simply deceptive—Caenorhabditis elegans lifespan studies: considerations for aging and antioxidant effects. FEBS Lett 21:3377–3387. https://doi.org/10.1016/j.febslet.2009.09.051
Article
CAS
Google Scholar
Harrison K, Foster-Brown C, Kelaiditis C, Mavrommatis Y, Pilic L (2020) The associations between phosphatidylethanolamine N-methyltransferase gene, dietary choline intake and anxiety and depression in healthy UK adults. Proc Nutr Soc 79:E784. https://doi.org/10.1017/S0029665120007703
Article
CAS
Google Scholar
He YQ, Zhang WC, Peng F, Lu RL, Zhou H, Bao GH, Wang B, Huang B, Li ZZ, Hu FL (2018) Metabolomic variation in wild and cultured Cordyceps and mycelia of Isaria cicadae. Biomed Chromatogr 33:1–13. https://doi.org/10.1002/bmc.4478
Article
CAS
Google Scholar
Hu FL, Schmidt K, Stoyanova S, Li ZZ, Grafe U, Hamburger M (2002) Radical scavengers from the entomogenous deuteromycete Beauveria amorpha. Planta Med 68:64–65. https://doi.org/10.1055/s-2002-19868
Article
CAS
PubMed
Google Scholar
Hu FL, He YQ, Huang B, Li C, Fan M, Li ZZ (2009) Secondary metabolites in a soybean fermentation broth of Paecilomyces militaris. Food Chem 116:198–201. https://doi.org/10.1016/j.foodchem.2009.02.055
Article
CAS
Google Scholar
Hugo P, Rainer Z, Norbert M, Horst K (1983) Incorporation of radioactive precursors into beauvericin produced by Paecilomyces fumosoroseus. Pergamon 22:1719–1720. https://doi.org/10.1016/S0031-9422(00)80257-5
Article
Google Scholar
HuLI FLZZ (2007) Secondary metabolites and their bioactivities of Cordyceps and its related fungi. Mycosystema 26:607–632. https://doi.org/10.3969/j.issn.1672-6472.2007.04.021
Article
Google Scholar
Isaka M, Tanticharoen M, Thebtaranonth Y (2000) ChemInform abstract: cordyanhydrides a and b. two unique anhydrides from the insect pathogenic fungus Cordyceps pseudomilitaris BCC 1620. J Cheminform 41:1657–1660. https://doi.org/10.1016/S0040-4039(00)00008-3
Article
CAS
Google Scholar
Ji DB, Jia Y, Li CL, Wang YH, Cai SQ (2008) Antiaging effect of Cordyceps sinensis extract. Phytother Res 23:116–122. https://doi.org/10.1002/ptr.2576
Article
Google Scholar
Kim SB, Ahn B, Kim M, Ji HJ, Shin SK, Hong IP, Kim CY, Hwang BY, Lee MK (2014) Effect of Cordyceps militaris extract and active constituents on metabolic parameters of obesity induced by high-fat diet in C58BL/6J mice. J Ethnopharmacol 151:478–484. https://doi.org/10.1016/j.jep.2013.10.064
Article
CAS
PubMed
Google Scholar
Kumar C, Jacob TK, Devasahayam S, Geethu C, Hariharan V (2021) Characterization and biocontrol potential of a naturally occurring isolate of Metarhizium pingshaense infecting Conogethes punctiferalis. Microbiol Res 243:126645. https://doi.org/10.1016/j.micres.2020.126645
Article
CAS
Google Scholar
Liu Y, Wang J, Wang W, Zhang H, Zhang X, Han C (2015) The chemical constituents and pharmacological actions of Cordyceps sinensis. J Evid Based Complement Altern Med 2015:575063. https://doi.org/10.1155/2015/575063
Article
Google Scholar
Liu X, Luo Q, Rakariyatham K, Cao Y, Goulette T, Liu X, Xiao H (2016) Antioxidation and anti-ageing activities of different stereoisomeric astaxanthin in vitro and in vivo. J Funct Foods 25:50–61. https://doi.org/10.1016/j.jff.2016.05.009
Article
CAS
Google Scholar
Liu YN, Liu BY, Ma YC, Yang HL, Liu GQ (2020) Analysis of reference genes stability and histidine kinase expression under cold stress in Cordyceps militaris. PLoS One 15:e0236898. https://doi.org/10.1371/journal.pone.0236898
Article
CAS
PubMed
PubMed Central
Google Scholar
Lou H, Zhao W, Chen BX, Yu YH, Guo LQ (2020) Cmfhp gene mediates fruiting body development and carotenoid production in Cordyceps militaris. Biomolecules 10:410. https://doi.org/10.3390/biom10030410
Article
CAS
PubMed Central
Google Scholar
Lu R, Luo F, Hu FL, Huang B, Li C, Bao G (2013) Identification and production of a novel natural pigment, cordycepoid A, from Cordyceps bifusispora. Appl Microbiol Biotechnol 97(14):6241–6249. https://doi.org/10.1007/s00253-013-4966-y
Article
CAS
PubMed
Google Scholar
Lu R, Liu X, Gao S (2014) New tyrosinase inhibitors from Paecilomyces gunnii. J Agric Food Chem 62:11917–11923. https://doi.org/10.1021/jf504128c
Article
CAS
PubMed
Google Scholar
Luo FF, Lu RL, Zhou H, Hu FL, Bao GH, Huang B, Li ZZ (2013) Metabolic effect of an exogenous gene on transgenic Beauveria bassiana using liquid chromatography-mass spectrometry-based metabolomics. J Agric Food Chem 61:7008–7017. https://doi.org/10.1021/jf401703b
Article
CAS
PubMed
Google Scholar
Manrico B, Aristide C, Giovanni P, Beniamino S (1975) Isolation of beauvericin from Paecilomyces fumosoroseus. Phytochemistry 14:1865–1866. https://doi.org/10.1016/0031-9422(75)85311-8
Article
Google Scholar
Masahiko I, Prasat K, Kanyawim K, Nigel LH-J, Yodhathai T (2005) Bioactive substances from insect pathogenic fungi. Acc Chem Res 38:813–823. https://doi.org/10.1002/chin.200607264
Article
Google Scholar
Meca G, Soriano JM, Gaspari A, Ritieni A, Moretti A, ManEs J (2010) Antifungal effects of the bioactive compounds enniatins A, A(1), B, B(1). Toxicon 56:480–485. https://doi.org/10.1016/j.toxicon.2010.04.013
Article
CAS
PubMed
Google Scholar
Moliner C, Barros L, Dias MI, López V, Langa E (2018) Edible flowers of tagetes erecta l. as functional ingredients: phenolic composition, antioxidant and protective effects on Caenorhabditis elegans. Nutrients 10:2002. https://doi.org/10.3390/nu10122002
Article
CAS
PubMed Central
Google Scholar
Mularczyk M, Michalak I, Marycz K (2020) Astaxanthin and other nutrients from Haematococcus pluvialis-multifunctional applications. Mar Drugs 18:459. https://doi.org/10.3390/md18090459
Article
CAS
PubMed Central
Google Scholar
Olatunji OJ, Tang J, Tola A, Auberon F, Oluwaniyi O, Ouyang Z (2018) The genus Cordyceps: an extensive review of its traditional uses, phytochemistry and pharmacology. Fitoterapia 129:293–316. https://doi.org/10.1016/j.fitote.2018.05.010
Article
CAS
PubMed
Google Scholar
Onken B, Driscoll M (2010) Metformin induces a dietary restriction–like state and the oxidative stress response to extend C. elegans Healthspan via AMPK, LKB1, and SKN-1. PLoS One 5:e8758. https://doi.org/10.1371/journal.pone.0008758
Article
CAS
PubMed
PubMed Central
Google Scholar
Papandreou C, Bulló M, Hernández-Alonso P, Ruiz-Canela M, Li J, Guasch-Ferré M, Toledo E, Clish C, Corella D, Estruch R (2021) Choline metabolism and risk of atrial fibrillation and heart failure in the PREDIMED Study. Clin Chem 67:288–297. https://doi.org/10.1093/clinchem/hvaa224
Article
PubMed
Google Scholar
Rathor L, Pant A, Awasthi H, Mani D, Pandey R (2017) An antidiabetic polyherbal phytomedicine confers stress resistance and extends lifespan in Caenorhabditis elegans. Biogerontology 18:131–147. https://doi.org/10.1007/s10522-016-9668-2
Article
PubMed
Google Scholar
Schmidt K, Stoyanova S, Schubert B, Li Z, Hamburger M (2002) Militarinone A, a neurotrophic pyridone alkaloid from Paecilomyces militaris. Org Lett 4:197–199. https://doi.org/10.1021/ol016920j
Article
CAS
PubMed
Google Scholar
Schmidt K, Li ZZ, Schubert B, Huang B, Stoyanova S, Hamburger M (2003) Screening of entomopathogenic deuteromycetes for activities on targets involved in degenerative diseases of the central nervous system. J Ethnopharmacol 89:251–260. https://doi.org/10.1016/j.jep.2003.08.009
Article
CAS
PubMed
Google Scholar
Shang Y, Xiao G, Zheng P, Cen K, Zhan S, Wang C (2016) Divergent and convergent evolution of fungal pathogenicity. Genome Biol Evol 8:1374–1387. https://doi.org/10.1093/gbe/evw082
Article
PubMed
PubMed Central
Google Scholar
Vayndorf EM, Lee SS, Liu RH (2013) Whole apple extracts increase lifespan, healthspan and resistance to stress in Caenorhabditis elegans. J Funct Foods 5:1235–1243. https://doi.org/10.1016/j.jff.2013.04.006
Article
Google Scholar
Velez H, Glassbrook NJ, Daub ME (2007) Mannitol metabolism in the phytopathogenic fungus Alternaria alternata. Fungal Genet Biol 44:258–268. https://doi.org/10.1016/j.fgb.2006.09.008
Article
CAS
PubMed
Google Scholar
Wartburg AV, Traber R (1988) Cyclosporins, fungal metabolites with immunosuppressive activities. Prog Med Chem 25:1–33. https://doi.org/10.1016/S0079-6468(08)70276-5
Article
Google Scholar
Wilson MA, Shukitt-Hale B, Kalt W, Ingram DK, Joseph JA, Wolko CA (2006) Blueberry polyphenols increase lifespan and thermotolerance in Caenorhabditis elegans. Aging Cell 5:59–68. https://doi.org/10.1111/j.1474-9726.2006.00192.x
Article
CAS
PubMed
Google Scholar
Wu YZ, Zhang HW, Sun ZH, Dai JG, Lin S (2018) Bysspectin A, an unusual octaketide dimer and the precursor derivatives from the endophytic fungus Byssochlamys spectabilis IMM0002 and their biological activities. Eur J Med Chem 145:717–725. https://doi.org/10.1016/j.ejmech.2018.01.030
Article
CAS
PubMed
Google Scholar
Xiao JH, Xiao DM, Sun ZH, Xiong Q, Zhong JJ (2009) Chemical compositions and antimicrobial property of three edible and medicinal Cordyceps species. J Food Agric Environ 7:91–100. https://doi.org/10.3168/jds.2009-92-7-3543
Article
CAS
Google Scholar
Yamaguchi J, Hayashi Y (2010) Syntheses of fumagillin and ovalicin. Chem Eur J 16:3884–3901. https://doi.org/10.1002/chem.200902433
Article
CAS
PubMed
Google Scholar
Zhang J, Liu SS, Yuan WY, Wei JJ, Zhao YX, Luo DQ (2019) Carotane-type sesquiterpenes from cultures of the insect pathogenic fungus Isaria fumosorosea. J Asian Nat Prod Res 21:234–240. https://doi.org/10.1080/10286020.2017.1410143
Article
CAS
PubMed
Google Scholar
Zhang K, Lyu W, Gao Y, Zhang X, Sun Y, Huang B (2021) Choline-Mediated lipid reprogramming as a dominant salt tolerance mechanism in grass species lacking glycine betaine. Plant Cell Physiol 61:2018–2030. https://doi.org/10.1093/pcp/pcaa116
Article
CAS
PubMed
Google Scholar