Abdel-Motaal FF, Mahmoud WN, El-Zayad SA (2020) Eco-friendly biodegradation of poly (ε-caprolactone) (PCL) by the fungus Alternaria alternata-ST01. Plant Cell Biotechnol Mol Biol 20:1447–1455
Google Scholar
Abe M, Kobayashi K, Honma N, Nakasaki K (2010) Microbial degradation of poly(butylene succinate) by Fusarium solani in soil environments. Polym Degrad Stab 95:138–143. https://doi.org/10.1016/j.polymdegradstab.2009.11.042
Article
CAS
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410
Article
CAS
PubMed
Google Scholar
Arora NK, Panosyan H (2019) Extremophiles: applications and roles in environmental sustainability. Environ Sustain 2:217–218. https://doi.org/10.1007/s42398-019-00082-0
Article
Google Scholar
Bhatia RK, Ullah S, Hoque MZ, Ahmad I, Yang YH, Bhatt AK, Bhatia SK (2021) Psychrophiles: a source of cold-adapted enzymes for energy efficient biotechnological industrial processes. J Environ Chem Eng 9(1):104607. https://doi.org/10.1016/j.jece.2020.104607
Article
CAS
Google Scholar
Bhattacharya D, Nagpure A, Gupta RK (2007) Bacterial chitinases: properties and potential. Crit Rev Biotechnol 27:21–28. https://doi.org/10.1080/07388550601168223
Article
CAS
PubMed
Google Scholar
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
Article
CAS
PubMed
Google Scholar
Brucato CL, Wong SS (1991) Extracellular poly(3-hydroxybutyrate) depolymerase from Penicillium funiculosum: general characteristics and active site studies. Arch Biochem Biophys 290:497–502. https://doi.org/10.1016/0003-9861(91)90572-z
Article
CAS
PubMed
Google Scholar
Chua TK, Tseng M, Yang MK (2013) Degradation of poly(ε-caprolactone) by thermophilic Streptomyces thermoviolaceus subsp. thermoviolaceus 76T–2. AMB Express. https://doi.org/10.1186/2191-0855-3-8
Article
PubMed
PubMed Central
Google Scholar
Emadian SM, Onay TT, Demirel B (2017) Biodegradation of bioplastics in natural environments. Waste Manag 59:526–536. https://doi.org/10.1016/j.wasman.2016.10.006
Article
CAS
PubMed
Google Scholar
Engqvist MKM (2018) Correlating enzyme annotations with a large set of microbial growth temperatures reveals metabolic adaptations to growth at diverse temperatures. BMC Microbiol 18:177. https://doi.org/10.1186/s12866-018-1320-7
Article
CAS
PubMed
PubMed Central
Google Scholar
García-Hidalgo J, Hormigo D, Prieto MA, Arroyo M, de la Mata I (2012) Extracellular production of Streptomyces exfoliatus poly(3-hydroxybutyrate) depolymerase in Rhodococcus sp. T104: determination of optimal biocatalyst conditions. Appl Microbiol Biotechnol 93:1975–1988. https://doi.org/10.1007/s00253-011-3527-5
Article
CAS
PubMed
Google Scholar
Gowda USV, Shivakumar S (2015) Poly(-β-hydroxybutyrate) (PHB) depolymerase PHAZ Pen from Penicillium expansum: purification, characterization and kinetic studies. 3 Biotech 5(6):901–909. https://doi.org/10.1007/s13205-015-0287-4
Article
Google Scholar
Hayes MA (2012) The geomyces fungi: ecology and distribution. Bioscience 62(9):819–823. https://doi.org/10.1525/bio.2012.62.9.7
Article
Google Scholar
Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309–316. https://doi.org/10.1042/bj2800309
Article
CAS
PubMed
PubMed Central
Google Scholar
Johnson AM, Barlow DE, Kelly AL, Varaljay VA, Crookes-Goodson WJ, Biffinger JC (2021) Current progress towards understanding the biodegradation of synthetic condensation polymers with active hydrolases. Polym Int 70(7):977–983. https://doi.org/10.1002/pi.6131
Article
CAS
Google Scholar
Jung HW, Yang MK, Su RC (2018) Purification, characterization, and gene cloning of an Aspergillus fumigatus polyhydroxybutyrate depolymerase used for degradation of polyhydroxybutyrate, polyethylene succinate, and polybutylene succinate. Polym Degrad Stab 154:186–194. https://doi.org/10.1016/j.polymdegradstab.2018.06.002
Article
CAS
Google Scholar
Källberg M, Wang H, Wang S, Peng J, Wang Z, Lu H, Xu J (2012) Template-based protein structure modeling using the RaptorX web server. Nat Protoc 7:1511–1522. https://doi.org/10.1038/nprot.2012.085
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim DY, Rhee YH (2003) Biodegradation of microbial and synthetic polyesters by fungi. Appl Microbiol Biotechnol 61:300–308. https://doi.org/10.1007/s00253-002-1205-3
Article
CAS
PubMed
Google Scholar
Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096
Article
CAS
PubMed
PubMed Central
Google Scholar
Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. https://doi.org/10.1038/227680a0
Article
CAS
PubMed
Google Scholar
Lee TK, Huang KC (2013) The role of hydrolases in bacterial cell-wall growth. Curr Opin Microbiol 16:760–766. https://doi.org/10.1016/j.mib.2013.08.005
Article
CAS
PubMed
PubMed Central
Google Scholar
Leushkin EV, Logacheva MD, Penin AA, Sutormin RA, Gerasimov ES, Kochkina GA, Ivanushkina NE, Vasilenko OV, Kondrashov AS, Ozerskaya SM (2015) Comparative genome analysis of Pseudogymnoascus spp. reveals primarily clonal evolution with small genome fragments exchanged between lineages. BMC Genom. https://doi.org/10.1186/s12864-015-1570-9
Article
Google Scholar
Liu Z, Gosser Y, Baker PJ, Ravee Y, Lu Z, Alemu G, Li H, Butterfoss GL, Kong XP, Gross R, Montclare JK (2009) Structural and functional studies of Aspergillus oryzae cutinase: enhanced thermostability and hydrolytic activity of synthetic ester and polyester degradation. J Am Chem Soc 131(43):15711–15716. https://doi.org/10.1021/ja9046697
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu M, Zhang T, Long L, Zhang R, Ding S (2019) Efficient enzymatic degradation of poly (3-caprolactone) by an engineered bifunctional lipase-cutinase. Polym Degrad Stab 160:120–125
Article
CAS
Google Scholar
Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, Basutkar P, Tivey ARN, Potter SC, Finn RD, Lopez R (2019) The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res 47(W1):W636–W641. https://doi.org/10.1093/nar/gkz268
Article
CAS
PubMed
PubMed Central
Google Scholar
Maeda H, Yamagata Y, Abe K, Hasegawa F, Machida M, Ishioka R, Gomi K, Nakajima T (2005) Purification and characterization of a biodegradable plastic-degrading enzyme from Aspergillus oryzae. Appl Microbiol Biotechnol 67:778–788. https://doi.org/10.1007/s00253-004-1853-6
Article
CAS
PubMed
Google Scholar
Malecki PH, Bejger M, Rypniewski W, Vorgias CE (2020) The crystal structure of a Streptomyces thermoviolaceus thermophilic chitinase known for its refolding efficiency. Int J Mol Sci 21(8):2892. https://doi.org/10.3390/ijms21082892
Article
CAS
PubMed Central
Google Scholar
Mao H, Liu H, Gao Z, Su T, Wang Z (2005) Biodegradation of poly(butylene succinate) by Fusarium sp. FS1301 and purification and characterization of poly(butylene succinate) depolymerase. Polym Degrad Stab 114:1–7. https://doi.org/10.1016/j.polymdegradstab.2015.01.025
Article
CAS
Google Scholar
Mao Y, Yin Y, Zhang L, Alias SA, Gao B, Wei D (2015) Development of a novel Aspergillus uracil deficient expression system and its application in expressing a cold-adapted α-amylase gene from Antarctic fungi Geomyces pannorum. Process Biochem 50:1581–1590. https://doi.org/10.1016/j.procbio.2015.06.016
Article
CAS
Google Scholar
Mouyna I, Aimanianda V, Hartl L, Prevost MC, Sismeiro O, Dillies MA, Jagla B, Legendre R, Coppee JY, Latgé JP (2016) GH16 and GH81 family β-(1,3)-glucanases in Aspergillus fumigatus are essential for conidial cell wall morphogenesis. Cell Microbiol 18:1285–1293. https://doi.org/10.1111/cmi.12630
Article
CAS
PubMed
Google Scholar
Nandanwar SK, Borkar SB, Lee JH, Kim HJ (2020) Taking advantage of promiscuity of cold-active enzymes. Appl Sci 10(22):8128. https://doi.org/10.3390/app10228128
Article
CAS
Google Scholar
Nawaz A, Hasan F, Shah AA (2015) Degradation of poly(ε-caprolactone) (PCL) by a newly isolated Brevundimonas sp. strain MRL-AN1 from soil. FEMS Microbiol Lett 362:1–7. https://doi.org/10.1093/femsle/fnu004
Article
CAS
PubMed
Google Scholar
Oda Y, Oida N, Urakami T, Tonomura K (1997) Polycaprolactone depolymerase produced by the bacterium Alcaligenes faecalis. FEMS Microbiol Lett 152:339–343. https://doi.org/10.1111/j.1574-6968.1997.tb10449.x
Article
CAS
PubMed
Google Scholar
Pedraza-Reyes M, Lopez-Romero E (1991) Detection of nine chitinase species in germinating cells of Mucor rouxii. Curr Microbiol 22:43–46
Article
CAS
Google Scholar
Poveda G, Gil-Durán C, Vaca I, Levicán G, Chávez R (2018) Cold-active pectinolytic activity produced by filamentous fungi associated with Antarctic marine sponges. Biol Res. https://doi.org/10.1186/s40659-018-0177-4
Article
PubMed
PubMed Central
Google Scholar
Sameshima-Yamashita Y, Koitabashi M, Tsuchiya W, Suzuki K, Watanabe T, Shinozaki Y, Yamamoto-Tamura K, Yamazaki T, Kitamoto H (2016) Enhancement of biodegradable plastic-degrading enzyme production from Paraphoma-like fungus, Strain B47–9. J Oleo Sci 65:257–262. https://doi.org/10.5650/jos.ess15207
Article
CAS
PubMed
Google Scholar
Sándor E, Pusztahelyi T, Karaffa L, Karányi Z, Pócsi I, Biró S, Szentirmai A (1998) Allosamidin inhibits the fragmentation of Acremonium chrysogenum but does not influence the cephalosporin-C production of the fungus. FEMS Microbiol Lett 164:231–236. https://doi.org/10.1111/j.1574-6968.1998.tb13091.x
Article
PubMed
Google Scholar
Santiago M, Ramírez-Sarmiento CA, Zamora RA, Parra LP (2016) Discovery, molecular mechanisms, and industrial applications of cold-active enzymes. Front Microbiol 7:1408. https://doi.org/10.3389/fmicb.2016.01408
Article
PubMed
PubMed Central
Google Scholar
Schrödinger L (2010) The PyMOL molecular graphics system, version 2.1. DeLano Scientific LLC, San Carlos
Google Scholar
Takaya N, Yamazaki D, Horiuchi H, Ohta A, Takagi M (1998) Cloning and characterization of a chitinase-encoding gene (chiA) from Aspergillus nidulans, disruption of which decreases germination frequency and hyphal growth. Biosci Biotechnol Biochem 62:60–65. https://doi.org/10.1271/bbb.62.60
Article
CAS
PubMed
Google Scholar
Urbanek AK, Rymowicz W, Strzelecki MC, Kociuba W, Franczak Ł, Mirończuk AM (2017) Isolation and characterization of Arctic microorganisms decomposing bioplastics. AMB Express 7:148. https://doi.org/10.1186/s13568-017-0448-4
Article
CAS
PubMed
PubMed Central
Google Scholar
Urbanek AK, Mirończuk AM, García-Martín A, Saborido A, de la Mata I, Arroyo M (2020) Biochemical properties and biotechnological applications of microbial enzymes involved in the degradation of polyester-type plastics. BBA Proteins Proteom 2:140315. https://doi.org/10.1016/j.bbapap.2019.140315
Article
CAS
Google Scholar
Urbanek AK, Strzelecki MC, Mirończuk AM (2021) The potential of cold-adapted microorganisms for biodegradation of bioplastics. Waste Manag 119:72–81. https://doi.org/10.1016/j.wasman.2020.09.031
Article
CAS
PubMed
Google Scholar
van Munster JM, Nitsche BM, Akeroyd M, Dijkhuizen L, van der Maarel MJ, Ram AF (2015) Systems approaches to predict the functions of glycoside hydrolases during the life cycle of Aspergillus niger using developmental mutants ∆brlA and ∆flbA. PLoS ONE 10(1):e0116269. https://doi.org/10.1371/journal.pone.0116269
Article
CAS
PubMed
PubMed Central
Google Scholar
Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ (2009) Jalview version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189–1191. https://doi.org/10.1093/bioinformatics/btp033
Article
CAS
PubMed
PubMed Central
Google Scholar
Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46:W296–W303. https://doi.org/10.1093/nar/gky427
Article
CAS
PubMed
PubMed Central
Google Scholar
Wojtusik M, Yepes CM, Villar JC, Cordes A, Arroyo M, Garcia-Ochoa F, Ladero M (2018) Kinetic modeling of cellobiose by a beta-glucosidase from Aspergillus fumigatus. Chem Eng Resh Des 136:502–512. https://doi.org/10.1016/j.cherd.2018.06.020
Article
CAS
Google Scholar