Adade CM, Oliveira IR, Pais JA, Souto-Padron T (2013) Melittin peptide kills Trypanosoma cruzi parasites by inducing different cell death pathways. Toxicon 69:227–239. https://doi.org/10.1016/j.toxicon.2013.03.011
Article
CAS
PubMed
Google Scholar
Al-Ani I, Zimmermann S, Reichling J, Wink M (2015) Pharmacological synergism of bee venom and melittin with antibiotics and plant secondary metabolites against multi-drug resistant microbial pathogens. Phymed 22:245–255. https://doi.org/10.1016/j.phymed.2014.11.019
Article
CAS
Google Scholar
Ali M (2012) Studies on bee venom and its medical uses. IJOART 1:2
Google Scholar
Banks BEC, Shipolini RA (1986) Chemistry and pharmacology of honey-bee venom. In: Piek T (ed) Venoms of the Hymenoptera. Academic press, London, pp 329–415
Chapter
Google Scholar
Barkiene E, Sakiene V, Zavistanaviute P, Zokaityte E, Dauksiene A, Jagminas P, Klupsaike D, Bliznikas S, Ruzauskas M (2020) Variations of the
antimicrobial, antioxidant, sensory attributes and biogenic amines content in Lithuania-derived bee products. LWT-Food Sci Technol 118:108793. https://doi.org/10.1016/j.lwt.2019.108793
Article
CAS
Google Scholar
Bogdanov S (2017) Bee Venom: composition, health, medicine: a review. Bee Science Product
Boons K, Mertens L, Van Derlinden E, David CC, Hofkens J, Van Impe JF (2013) Behavior of Escherichia coli in a heterogeneous gelatin-dextran
mixture. Appl Environ Microbiol 79:3126–3128. https://doi.org/10.1128/AEM.03782-12
Article
CAS
PubMed
PubMed Central
Google Scholar
Choi J, Jang A, Lin S, Lim S, Kim D, Park K, Han S, Yeo J, Seo H (2015) Melittin, a honeybee venom-derived antimicrobial peptide, may target methicillin-resistant Staphylococcus aureus. Mol Med Rep 12(5):6483–6490. https://doi.org/10.3892/mmr.2015.4275
Article
CAS
PubMed
PubMed Central
Google Scholar
Dong J, Ying B, Huang S, Ma S, Long P, Tu X, Yang W, Wu Z, Chen W, Miao X (2015) High-performance liquid chromatography combined with intrinsic fluorescence detection to analyse melittin in individual honeybee (Apis mellifera) venom sac. J Chromatogr B 1002:139–143. https://doi.org/10.1016/j.jchromb.2015.08.014
Article
CAS
Google Scholar
Fennell JF, Shipman WH, Cole LJ (1968) Antibacterial action of Melittin, polypeptide from bee venom. Proc Soc Exp Biol Med 127(3):707–710
Article
CAS
Google Scholar
Fratini F, Cilia G, Turchi B, Felicioli A (2017) Insects, arachnids, and centipedes’ venom: a powerful weapon against bacteria A literature reviews. Toxicon 130:91–103. https://doi.org/10.1016/j.toxicon.2017.02.020
Article
CAS
PubMed
Google Scholar
Hegazi AG, Abd-Allah FM, Saleh AA, Abdou AM, Fouad EA (2017) Antibacterial Activity of Italian (Apis mellifera) bees Venom. JCPS 10(3):1188–1192
CAS
Google Scholar
Hu H, Chen D, Li Y, Zhang X (2006) Effect of polypeptides in bee venom on growth inhibition and apoptosis induction of the human hepatoma cell line SMMC-7721 in-vitro and Balb/c nude mice in-vivo. J Pharm Pharmacol 58(1):83–89
Article
CAS
Google Scholar
Ip SW, Chu YL, Yu CS, Chen PY, Ho HC, Yang JS, Huang HY, Chueh FS, Lai TY, Chung JG (2012) Bee venom induces apoptosis through intracellular Ca2+-modulated intrinsic death pathway in human bladder cancer cells. Int J Urol 19:61–70
Article
CAS
Google Scholar
Jang MH, Shin MC, Lim S, Han SM, Park HJ, Shin I, Lee JS, Kim KA, Kim EH, Kim CJ (2003) Bee venom induces apoptosis and inhibits expression of cyclooxygenase-2 mRNA in human lung cancer cell line NCI-H1299. J Pharmacol Sci 91(2):95–104
Article
CAS
Google Scholar
Jo M, Park MH, Kollipara PS, An BJ, Song HS, Han SB, Kim JH, Song MJ, Hong JT (2012) Anti-cancer effect of bee venom toxin and melittin in ovarian cancer cells through induction of death receptors and inhibition of JAK2/STAT3 pathway. Toxicol Appl Pharmacol 258:72–81
Article
CAS
Google Scholar
Kokot ZJ, Matysiak J, Urbaniak B, Derezinski P (2011) New CZE-DAD method for honeybee venom analysis and standardization of the product. Anal Bioanal Chem 399:2487–2494. https://doi.org/10.1007/s00216-010-4627-2
Article
CAS
PubMed
PubMed Central
Google Scholar
Leandro L, Mendes C, Casemiro L, Vinholis A, Cunha W, Almeida R, Martins C (2015) Antimicrobial activity of apitoxin, melittin and phospholipase A2 of honeybee (Apis mellifera) venom against oral pathogens. An Acad Bras Ciênc 87(1):147–155. https://doi.org/10.1590/0001-3765201520130511
Article
CAS
PubMed
Google Scholar
Lee JE, Shah VK, Lee EJ, Oh MS, Choi JJ (2019) Melittin- A bee venom component - Enhances muscle regeneration factors expression in a mouse model of skeletal muscle contusion. J Pharmacol Sci 140:26–32. https://doi.org/10.1016/j.jphs.2019.03.009
Article
CAS
PubMed
Google Scholar
Li R, Zhang L, Fang Y, Han B, Lu X, Zhou T, Feng M, Li J (2013) Proteome and phosphoproteome analysis of honeybee (Apis mellifera) venom collected from electrical stimulation and manual extraction of the venom gland. BMC Genomics 14:766
Article
CAS
Google Scholar
Liu H, Han Y, Fu H, Liu M, Wu J, Chen X, Zhang S, Chen Y (2013) Construction and expression of sTRAIL–melittin combining enhanced anticancer activity with antibacterial activity in Escherichia coli. Appl Microbiol and Biotechnol 97:2877–2884. https://doi.org/10.1007/s00253-012-4541-y
Article
CAS
Google Scholar
Lobete MM, Fernandez EN, Van Impe JFM (2015) Recent trends in non-invasive in situ techniques to monitor bacterial colonies in solid (model) food.
Front Microbiol 6:148
Article
Google Scholar
Massaro C, Simpson J, Powell D, Brooks P (2015) Chemical composition and antimicrobial activity of honeybee (Apis mellifera ligustica) propolis from subtropical eastern Australia. Sci Nat 102:11–12
Article
Google Scholar
Memariani H, Memariani M (2020) Anti-fungal properties and mechanisms of melittin. Appl Microbiol and Biotechnol 104:6513–6526. https://doi.org/10.1007/s00253-020-10701-0
Article
CAS
Google Scholar
Miles AA, Misra SS, Irwin J (1938) The estimation of the bactericidal power of blood. J Hyg (Lond) 38:732
CAS
Google Scholar
Noriega E, Laca A, Diaz M (2010) Decisive role of structure in food microbial colonization and implications for predictive
microbiology. J Food Protect 73:938–951. https://doi.org/10.3389/fmicb.2015.00148
Article
CAS
Google Scholar
Official Journal of the European Union COMMISSION REGULATION (EC) No 2073/2005 of 15 November 2005 on microbiological criteria for
foodstuffs (2005), pp L 338/1-L 338/26
Perumal Samy R, Gopalakrishnakone P, Thwin MM, Chow TKV, Bow H, Yap EH, Thong TWJ (2007) Antibacterial activity of snake, scorpion and bee venoms: a comparison with purified venom phospholipase A2 enzymes. J Appl Microbiol 102:650–659. https://doi.org/10.1111/j.1365-2672.2006.03161.x
Article
CAS
PubMed
Google Scholar
Pucca MB, Cerni FA, Oliveira IS, Jenkins TP, Argemí L, Sørensen CV, Ahmadi S, Barbosa JE, Laustsen AH (2019) Bee Updated: Current Knowledge on Bee Venom and Bee Envenoming Therapy. Front Immunol 10:2090. https://doi.org/10.3389/fimmu.2019.02090
Article
CAS
PubMed
PubMed Central
Google Scholar
Rybak-Chmielewska H, Szczęsna T (2004) HPLC study of chemical composition of honeybee (Apis mellifera L.) venom. J Apic Sci 48:103–109
Google Scholar
Shai Y (2002) Mode of action of membrane active antimicrobial peptides. Biopolymers 66:236–248
Article
CAS
Google Scholar
Shipolini RA (1984) Biochemistry of Bee venom. In: Tu AT (ed) Insect Poisons, Allergens, and Other Invertebrate Venoms, vol 2. Marcel Dekker, New York, pp 49–85
Google Scholar
Socarras KM, Theophilus PAS, Torres JP, Gupta K, Sapi E (2017) Antimicrobial activity of bee venom and melittin against Borrelia burgdorferi. Antibiotics 6(31). https://doi.org/10.3390/antibiotics6040031.
Surendra NS, Jayaram GN, Reddy MS (2011) Antimicrobial activity of crude venom extracts in honeybees (Apis cerana, Apis dorsata, Apis florea) tested against selected pathogens. African J Microbiol Res 5(18):2765–2772. https://doi.org/10.5897/Ajmr11.593
Article
CAS
Google Scholar
Uddin MB, Lee BH, Nikapitiya C, Kim JH, Kim TH, Lee HC, Kim CG, Lee JS, Kim CJ (2016) Inhibitory effects of bee venom and its components against viruses in vitro and in vivo. J Microbiol 54(12):853–866. https://doi.org/10.1007/s12275-016-6376-1
Article
CAS
PubMed
PubMed Central
Google Scholar
Woods N, Niwasabutra K, Acevedo R, Igoli J, Altwaijry NA, Tusiimire J, Gray AI, Watson DG, Ferro VA (2017) Natural Vaccine Adjuvants and Immunopotentiators Derived from Plants, Fungi, Marine Organisms, and Insects. In: Schijns V, O’Hagan D (eds) Immunopotentiators in Modern Vaccines, 2nd edn. Academic Press, Cambridge, pp 211–229
Chapter
Google Scholar
Wu X, Narsimhan G (2017) Synergistic effect of low power ultrasonication on antimicrobial activity of melittin against Listeria monocytogenes. LWT 75:578–581. https://doi.org/10.1016/j.lwt.2016.10.008
Article
CAS
Google Scholar
Wu X, Singh AK, Wu X, Lyu Y, Bhunia AK, Narsimhan G (2016) Characterization of antimicrobial activity against Listeria and cytotoxicity of native melittin and its mutant variants. Colloids Surf B Biointerfaces 143:194–205. https://doi.org/10.3390/molecules21081084
Article
CAS
PubMed
Google Scholar
Yao X, Zhu X, Pan S, Fang Y, Jiang F, Phillips GO, Xu X (2012) Antimicrobial activity of nobiletin and tangeretin against Pseudomonas. J Food Chem 132:1883–1890. https://doi.org/10.1016/j.foodchem.2011.12.021
Article
CAS
Google Scholar
Zolfagharian H, Mohajeri M, Babaie M (2016) Bee venom (Apis Mellifera) an effective potential alternative to gentamicin for specific bacteria strains: Bee venom an effective potential for bacteria. J Pharmacopuncture 19:225–230. https://doi.org/10.3831/KPI.2016.19.023
Article
PubMed
PubMed Central
Google Scholar