Baulcombe DC, Saunders GR, Bevan MW, Mayo MA, Harrison BD (1986) Expression of biologically active viral satellite RNA from the nuclear genome of transformed plants. Nature 321(6068):446
Article
CAS
Google Scholar
Boorstein WR, Craig EA (1990) Transcriptional regulation of SSA3, an HSP70 gene from Saccharomyces cerevisiae. Mol Cell Biol 10(6):3262–3267
Article
CAS
PubMed
PubMed Central
Google Scholar
Britton ME, Kapoor M (2002) The oligomeric state, complex formation, and chaperoning activity of Hsp70 and Hsp80 of Neurospora crassa. Biochem Cell Biol 80(6):797–809
Article
CAS
PubMed
Google Scholar
Caruso M, Sacco M, Medoff G, Maresca B (1987) Heat shock 70 gene is differentially expressed in Histoplasma capsulatum strains with different levels of thermotolerance and pathogenicity. Mol Microbiol 1(2):151–158
Article
CAS
PubMed
Google Scholar
Chen C, Li Q, Wang Q, Lu D, Zhang H, Wang J, Fu R (2017) Transcriptional profiling provides new insights into the role of nitric oxide in enhancing Ganoderma oregonense resistance to heat stress. Sci Rep 7(1):15694
Article
PubMed
PubMed Central
CAS
Google Scholar
Clerico EM, Tilitsky JM, Meng W, Gierasch LM (2015) How Hsp70 molecular machines interact with their substrates to mediate diverse physiological functions. J Mol Biol 427(7):1575–1588
Article
CAS
PubMed
PubMed Central
Google Scholar
Clerico EM, Meng W, Pozhidaeva A, Bhasne K, Petridis C, Gierasch LM (2019) Hsp70 molecular chaperones: multifunctional allosteric holding and unfolding machines. Biochem J 476(11):1653–1677
Article
CAS
PubMed
Google Scholar
Craig EA, Jacobsen K (1984) Mutations of the heat inducible 70 kilodalton genes of yeast confer temperature sensitive growth. Cell 38(3):841–849
Article
CAS
PubMed
Google Scholar
Craig EA, Kramer J, Kosic-Smithers J (1987) SSC1, a member of the 70-kDa heat shock protein multigene family of Saccharomyces cerevisiae, is essential for growth. P Natl Acad Sci USA 84(12):4156–4160
Article
CAS
Google Scholar
Daugaard M, Rohde M, Jaattela M (2007) The heat shock protein 70 family: highly homologous proteins with overlapping and distinct functions. FEBS Lett 581(19):3702–3710
Article
CAS
PubMed
Google Scholar
Fu YP, Liang Y, Dai YT, Yang CT, Duan MZ, Zhang Z, Hu SN, Zhang ZW, Li Y (2016) De novo sequencing and transcriptome analysis of Pleurotus eryngii subsp. tuoliensis (Bailinggu) mycelia in response to cold stimulation. Molecules 21(5):560
Article
PubMed Central
CAS
Google Scholar
Gong WJ, Golic KG (2006) Loss of Hsp70 in Drosophila is pleiotropic, with effects on thermotolerance, recovery from heat shock and neurodegeneration. Genetics 172(1):275–286
Article
CAS
PubMed
PubMed Central
Google Scholar
Hofgen R, Willmitzer L (1988) Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res 16(20):9877
Article
CAS
PubMed
PubMed Central
Google Scholar
Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227(4691):1229–1231
Article
CAS
Google Scholar
Kiang JG, Tsokos GC (1998) Heat shock protein 70 kDa: molecular biology, biochemistry, and physiology. Pharmacol Therapeut 80(2):183–201
Article
CAS
Google Scholar
Kregel KC (2002) Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol 92(5):2177–2186
Article
CAS
PubMed
Google Scholar
Kurahashi A, Sato M, Nishibori K, Fujimori F (2014) Heat shock protein 9 mRNA expression increases during fruiting body differentiation in Grifola frondosa and other edible mushrooms. Mycoscience 55(2):98–102
Article
CAS
Google Scholar
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948
Article
CAS
PubMed
Google Scholar
Lee JO, Jeong MJ, Kwon TR, Lee SK, Byun MO, Chung IM, Park SC (2006) Pleurotus sajor-caju HSP100 complements a thermotolerance defect in hsp104 mutant Saccharomyces cerevisiae. J Biosciences 31(2):223–233
Article
CAS
Google Scholar
Li GC, Mak JY (2009) Re-induction of hsp70 synthesis: an assay for thermotolerance. Int J Hyperther 25(4):249–257
Article
CAS
Google Scholar
Liu L, Jia P, Lu W, Guo Q, Guo L (2014) Differential protein expression analysis of Hypsizygus marmoreus under high temperature stress. Biotechnol Bull 5:142–147 (in Chinese)
Google Scholar
Liu J, Shang X, Liu J, Tan Q (2016) Changes in trehalose content, enzyme activity and gene expression related to trehalose metabolism in Flammulina velutipes under heat shock. Microbiology 162:1274–1285
Article
CAS
PubMed
Google Scholar
Liu R, Zhang X, Ren A, Shi D, Shi L, Zhu J, Yu H, Zhao M (2018) Heat stress-induced reactive oxygen species participate in the regulation of HSP expression, hyphal branching and ganoderic acid biosynthesis in Ganoderma lucidum. Microbiol Res 209:43–54
Article
CAS
PubMed
Google Scholar
Liu X, Wu X, Gao W, Qu J, Chen Q, Huang C, Zhang J (2019) Protective roles of trehalose in Pleurotus pulmonarius during heat stress response. J Integr Agr 18(2):428–437
Article
CAS
Google Scholar
McAlister L, Finkelstein DB (1980) Heat shock proteins and thermal resistance in yeast. Biochem Bioph Res Co 93(3):819–824
Article
CAS
Google Scholar
Miura T, Minegishi H, Usami R, Abe F (2006) Systematic analysis of HSP gene expression and effects on cell growth and survival at high hydrostatic pressure in Saccharomyces cerevisiae. Extremophiles 10(4):279–284
Article
CAS
PubMed
Google Scholar
Mleczek M, Siwulski M, Rzymski P, Budka A, Kalač P, Jasińska A, Gąsecka M, Budzyńska S, Niedzielski P (2018) Comparison of elemental composition of mushroom Hypsizygus marmoreus originating from commercial production and experimental cultivation. Sci Hortic 236:30–35
Article
CAS
Google Scholar
Montero-Barrientos M, Hermosa R, Nicolas C, Cardoza RE, Gutierrez S, Monte E (2008) Overexpression of a Trichoderma HSP70 gene increases fungal resistance to heat and other abiotic stresses. Fungal Genet Biol 45(11):1506–1513
Article
CAS
PubMed
Google Scholar
Montero-Barrientos M, Hermosa R, Cardoza RE, Gutierrez S, Nicolas C, Monte E (2010) Transgenic expression of the Trichoderma harzianum hsp70 gene increases Arabidopsis resistance to heat and other abiotic stresses. J Plant Physiol 167(8):659–665
Article
CAS
PubMed
Google Scholar
Nelson RJ, Heschl MF, Craig EA (1992) Isolation and characterization of extragenic suppressors of mutations in the SSA hsp70 genes of Saccharomyces cerevisiae. Genetics 131(2):277–285
CAS
PubMed
PubMed Central
Google Scholar
Nwaka S, Mechler B, von Ahsen O, Holzer H (1996) The heat shock factor and mitochondrial Hsp70 are necessary for survival of heat shock in Saccharomyces cerevisiae. FEBS Lett 399(3):259–263
Article
CAS
PubMed
Google Scholar
Qiu C, Yan W, Li P, Deng W, Song B, Li T (2013) Evaluation of growth characteristics and genetic diversity of commercial and stored lines of Hypsizygus marmoreus. Int J Agric Biol 15(3):479
CAS
Google Scholar
Richter K, Haslbeck M, Buchner J (2010) The heat shock response: life on the verge of death. Mol Cell 40(2):253–266
Article
CAS
PubMed
Google Scholar
Sanmiya K, Suzuki K, Egawa Y, Shono M (2004) Mitochondrial small heat-shock protein enhances thermotolerance in tobacco plants. FEBS Lett 557(1–3):265–268
Article
CAS
PubMed
Google Scholar
Schilke B, Forster J, Davis J, James P, Walter W, Laloraya S, Johnson J, Miao B, Craig E (1996) The cold sensitivity of a mutant of Saccharomyces cerevisiae lacking a mitochondrial heat shock protein 70 is suppressed by loss of mitochondrial DNA. J Cell Bio 134(3):603–613
Article
CAS
Google Scholar
Schumann W (2007) Thermosensors in eubacteria: role and evolution. J Biosci 32(3):549–557
Article
CAS
PubMed
Google Scholar
Sekhar A, Velyvis A, Zoltsman G, Rosenzweig R, Bouvignies G, Kay LE (2018) Conserved conformational selection mechanism of Hsp70 chaperone–substrate interactions. elife 7:764
Article
Google Scholar
Song L, Jiang Y, Zhao H, Hou M (2012) Acquired thermotolerance in plants. Plant Cell 111(3):265–276
CAS
Google Scholar
Su P, Li H (2008) Arabidopsis stromal 70-kD heat shock proteins are essential for plant development and important for thermotolerance of germinating seeds. Plant Physiol 146(3):1231–1241
Article
CAS
PubMed
PubMed Central
Google Scholar
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729
Article
CAS
PubMed
PubMed Central
Google Scholar
Tiwari S, Thakur R, Shankar J (2015) Role of heat-shock proteins in cellular function and in the biology of fungi. Biotechnol Res Int 2015:132635
Article
PubMed
PubMed Central
CAS
Google Scholar
Voelker T, Sturm A, Chrispeels MJ (1987) Differences in expression between two seed lectin alleles obtained from normal and lectin-deficient beans are maintained in transgenic tobacco. EMBO J 6(12):3571–3577
Article
CAS
PubMed
PubMed Central
Google Scholar
Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61(3):199–223
Article
Google Scholar
Wang X, Yan B, Shi M, Zhou W, Zekria D, Wang H, Kai G (2016) Overexpression of a Brassica campestris HSP70 in tobacco confers enhanced tolerance to heat stress. Protoplasma 253(3):637–645
Article
CAS
PubMed
Google Scholar
Wang L, Wu X, Gao W, Zhao M, Zhang J, Huang C (2017) Differential expression patterns of Pleurotus ostreatus catalase genes during developmental stages and under heat stress. Genes 8:335
Article
PubMed Central
CAS
Google Scholar
Wang G, Ma C, Luo Y, Zhou S, Zhou Y, Ma X, Cai Y, Yu J, Bian Y, Gong Y (2018a) Proteome and transcriptome reveal involvement of heat shock proteins and indoleacetic acid metabolism process in Lentinula edodes thermotolerance. Cell Physiol Biochem 50(5):1617–1637
Article
CAS
PubMed
Google Scholar
Wang G, Zhou S, Luo Y, Ma C, Gong Y, Zhou Y, Shuangshuang G, Huang Z, Lianlian Y, Yue H, Bian Y (2018b) The heat shock protein 40 LeDnaJ regulates stress resistance and indole-3-acetic acid biosynthesis in Lentinula edodes. Fungal Genet Biol 118:37–44
Article
CAS
PubMed
Google Scholar
Werner-Washburne M, Craig EA (1989) Expression of members of the Saccharomyces cerevisiae hsp70 multigene family. Genome 31(2):684–689
Article
CAS
PubMed
Google Scholar
Wu F, Zhou L, Yang Z, Bau T, Li T, Dai Y (2019) Resource diversity of Chinese macrofungi: edible, medicinal and poisonous species. Fungal Divers 98:1–76
Article
CAS
Google Scholar
Xu L, Gong W, Zhang H, Perrett S, Jones GW (2018) The same but different: the role of Hsp70 in heat shock response and prion propagation. Prion 12(3–4):170–174
Article
CAS
PubMed
PubMed Central
Google Scholar
Young MR, Craig EA (1993) Saccharomyces cerevisiae HSP70 heat shock elements are functionally distinct. Mol Cell Biol 13(9):5637–5646
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang X, Ren A, Li M, Cao P, Chen T, Zhang G, Shi L, Jiang A, Zhao MW (2016) Heat stress modulates mycelium growth, heat shock protein expression, ganoderic acid biosynthesis, and hyphal branching of Ganoderma lucidum via cytosolic Ca2+. Appl Environ Microb 82(14):4112–4125
Article
CAS
Google Scholar
Zhao D, Xia X, Su J, Wei M, Wu Y, Tao J (2019) Overexpression of herbaceous peony HSP70 confers high temperature tolerance. BMC Genomics 20(1):70
Article
PubMed
PubMed Central
Google Scholar
Zhu X, Wang Y, Liu Y, Zhou W, Yan B, Yang J, Shen Y (2018) Overexpression of BcHsfA1 transcription factor from Brassica campestris improved heat tolerance of transgenic tobacco. PLoS ONE 13(11):e0207277
Article
PubMed
PubMed Central
CAS
Google Scholar
Zou Y, Zhang M, Qu J, Zhang J (2018) iTRAQ-based quantitative proteomic analysis reveals proteomic changes in mycelium of Pleurotus ostreatus in response to heat stress and subsequent recovery. Front Microbiol 9:2368
Article
PubMed
PubMed Central
Google Scholar