Arnold S, Moss K, Henkel M, Hausmann R (2017) Biotechnological perspectives of pyrolysis oil for a bio-based economy. Trends Biotechnol 35(10):925–936. https://doi.org/10.1016/j.tibtech.2017.06.003
Article
CAS
PubMed
Google Scholar
Arnold S, Moss K, Dahmen N, Henkel M, Hausmann R (2018) Pretreatment strategies for microbial valorization of bio-oil fractions produced by fast pyrolysis of ash-rich lignocellulosic biomass. GCB Bioenergy 11(1):181–190. https://doi.org/10.1111/gcbb.12544
Article
CAS
Google Scholar
Beuker J, Steier A, Wittgens A, Rosenau F, Henkel M, Hausmann R (2016a) Integrated foam fractionation for heterologous rhamnolipid production with recombinant Pseudomonas putida in a bioreactor. AMB Express 6:11. https://doi.org/10.1186/s13568-016-0183-2
Article
CAS
PubMed
PubMed Central
Google Scholar
Beuker J, Barth T, Steier A, Wittgens A, Rosenau F, Henkel M, Hausmann R (2016b) High titer heterologous rhamnolipid production. AMB Express 6:124. https://doi.org/10.1186/s13568-016-0298-5
Article
CAS
PubMed
PubMed Central
Google Scholar
Cha M, Lee N, Kim M, Kim M, Lee S (2008) Heterologous production of Pseudomonas aeruginosa EMS1 biosurfactant in Pseudomonas putida. Bioresour Technol 99(7):2192–2199. https://doi.org/10.1016/j.biortech.2007.05.035
Article
CAS
PubMed
Google Scholar
Dammeyer T, Steinwand M, Kruger SC, Dubel S, Hust M, Timmis KN (2011) Efficient production of soluble recombinant single chain Fv fragments by a Pseudomonas putida strain KT2440 cell factory. Microb Cell Fact 10:11. https://doi.org/10.1186/1475-2859-10-11
Article
CAS
PubMed
PubMed Central
Google Scholar
Henkel M, Schmidberger A, Vogelbacher M, Kühnert C, Beuker J, Bernard T, Schwartz T, Syldatk C, Hausmann R (2014) Kinetic modeling of rhamnolipid production by Pseudomonas aeruginosa PAO1 including cell density-dependent regulation. Appl Microbiol Biotechnol 98(16):7013–7025. https://doi.org/10.1007/s00253-014-5750-3
Article
CAS
PubMed
Google Scholar
Henkel M, Müller MM, Hörmann B, Syldatk C, Hausmann R (2016) Microbial rhamnolipids. In: Grunwald P (ed) Handbook of carbohydrate-modifying biocatalysts. Pan stanford series on biocatalysis, vol 2. Pan Stanford, Singapore, pp 697–738
Google Scholar
Horlamus F, Wittgens A, Noll P, Michler J, Müller I, Weggenmann F, Oellig C, Rosenau F, Henkel M, Hausmann R (2019) One-step bioconversion of hemicellulose polymers to rhamnolipids with Cellvibrio japonicus: a proof-of-concept for a potential host strain in future bioeconomy. GCB Bioenergy 11(1):260–268. https://doi.org/10.1111/gcbb.12542
Article
CAS
Google Scholar
Khiyami MA, Pometto AL, Brown RC (2005) Detoxification of corn stover and corn starch pyrolysis liquors by Pseudomonas putida and Streptomyces setonii suspended cells and plastic compost support biofilms. J Agric Food Chem 53(8):2978–2987. https://doi.org/10.1021/jf048224e
Article
CAS
PubMed
Google Scholar
Layton DS, Ajjarapu A, Choi DW, Jarboe LR (2011) Engineering ethanologenic Escherichia coli for levoglucosan utilization. Bioresour Technol 102(17):8318–8322. https://doi.org/10.1016/j.biortech.2011.06.011
Article
CAS
PubMed
Google Scholar
Lian J, Chen S, Zhou S, Wang Z, O’Fallon J, Li CZ, Garcia-Perez M (2010) Separation, hydrolysis and fermentation of pyrolytic sugars to produce ethanol and lipids. Bioresour Technol 101(24):9688–9699. https://doi.org/10.1016/j.biortech.2010.07.071
Article
CAS
PubMed
Google Scholar
Lian J, Garcia-Perez M, Coates R, Wu H, Chen S (2012) Yeast fermentation of carboxylic acids obtained from pyrolytic aqueous phases for lipid production. Bioresour Technol 118:177–186. https://doi.org/10.1016/j.biortech.2012.05.010
Article
CAS
PubMed
Google Scholar
Lian J, Garcia-Perez M, Chen S (2013) Fermentation of levoglucosan with oleaginous yeasts for lipid production. Bioresour Technol 133:183–189. https://doi.org/10.1016/j.biortech.2013.01.031
Article
CAS
PubMed
Google Scholar
Linger JG, Hobdey SE, Franden MA, Fulk EM, Beckham GT (2016) Conversion of levoglucosan and cellobiosan by Pseudomonas putida KT2440. Metab Eng Commun 3:24–29. https://doi.org/10.1016/j.meteno.2016.01.005
Article
PubMed
PubMed Central
Google Scholar
Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20(3):848–889. https://doi.org/10.1021/ef0502397
Article
CAS
Google Scholar
Müller MM, Hormann B, Kugel M, Syldatk C, Hausmann R (2011) Evaluation of rhamnolipid production capacity of Pseudomonas aeruginosa PAO1 in comparison to the rhamnolipid over-producer strains DSM 7108 and DSM 2874. Appl Microbiol Biotechnol 89(3):585–592. https://doi.org/10.1007/s00253-010-2901-z
Article
CAS
PubMed
Google Scholar
Nikel PI, de Lorenzo V (2014) Robustness of Pseudomonas putida KT2440 as a host for ethanol biosynthesis. N Biotechnol 31(6):562–571. https://doi.org/10.1016/j.nbt.2014.02.006
Article
CAS
PubMed
Google Scholar
Ochsner UA, Reiser J, Fiechter A, Witholt B (1995) Production of Pseudomonas aeruginosa rhamnolipid biosurfactants in heterologous hosts. Appl Environ Microbiol 61(9):3503–3506
CAS
PubMed
PubMed Central
Google Scholar
Piskorz J, Scott DS, Radlein D (1988) Composition of oils obtained by fast pyrolysis of different woods. In: Pyrolysis oils from biomass (ACS Symposium Series), vol 376. American Chemical Society, pp 167–178
Prosen EM, Radlein D, Piskorz J, Scott DS, Legge RL (1993) Microbial utilization of levoglucosan in wood pyrolysate as a carbon and energy source. Biotechnol Bioeng 42(4):538–541. https://doi.org/10.1002/bit.260420419
Article
CAS
PubMed
Google Scholar
Tiso T, Sabelhaus P, Behrens B, Wittgens A, Rosenau F, Hayen H, Blank LM (2016) Creating metabolic demand as an engineering strategy in Pseudomonas putida—rhamnolipid synthesis as an example. Metab Eng Commun 3:234–244. https://doi.org/10.1016/j.meteno.2016.08.002
Article
PubMed
PubMed Central
Google Scholar
Wilms B, Hauck A, Reuss M, Syldatk C, Mattes R, Siemann M, Altenbuchner J (2001) High cell-density fermentation for production of L-N-carbamoylase using an expression system based on the Escherichia coli rhaBAD promoter. Biotechnol Bioeng 73(2):95–103. https://doi.org/10.1002/bit.1041
Article
CAS
PubMed
Google Scholar
Wittgens A, Tiso T, Arndt TT, Wenk P, Hemmerich J, Müller C, Wichmann R, Küpper B, Zwick M, Wilhelm S, Hausmann R, Syldatk C, Rosenau F, Blank LM (2011) Growth independent rhamnolipid production from glucose using the non-pathogenic Pseudomonas putida KT2440. Microb Cell Fact 10:80. https://doi.org/10.1186/1475-2859-10-80
Article
CAS
PubMed
PubMed Central
Google Scholar
Wittgens A, Kovacic F, Müller MM, Gerlitzki M, Santiago-Schübel B, Hofmann D, Tiso T, Blank LM, Henkel M, Hausmann R, Syldatk C, Wilhelm S, Rosenau F (2017) Novel insights into biosynthesis and uptake of rhamnolipids and their precursors. Appl Microbiol Biotechnol 101:2865–2878. https://doi.org/10.1007/s00253-016-8041-3
Article
CAS
PubMed
Google Scholar
Wittgens A, Santiago-Schuebel B, Henkel M, Tiso T, Blank LM, Hausmann R, Hofmann D, Wilhelm S, Jaeger KE, Rosenau F (2018) Heterologous production of long-chain rhamnolipids from Burkholderia glumae in Pseudomonas putida—a step forward to tailor-made rhamnolipids. Appl Microbiol Biotechnol 102:1229–1239. https://doi.org/10.1007/s00253-017-8702-x
Article
CAS
PubMed
Google Scholar