Abdel-Mawgoud AM, Hausmann R, Lépine F, Müller MM, Déziel E (2011) Rhamnolipids: detection, analysis, biosynthesis, genetic regulation, and bioengineering of production. In: Soberón-Chávez G (ed) biosurfactants from genes to application, 1st edn. Springer-Verlag, Berlin
Google Scholar
Bazsefidpar S, Mokhtarani B, Panahi R, Hajfarajollah H (2019) Overproduction of rhamnolipid by fed-batch cultivation of Pseudomonas aeruginosa in a lab-scale fermenter under tight DO control. Biodegradation 30(1):59–69. https://doi.org/10.1007/s10532-018-09866-3
Article
CAS
PubMed
Google Scholar
Camilios-Neto D, Meira JA, de Araújo MJ, Mitchell DA, Krieger N (2008) Optimization of the production of rhamnolipids by P. aeruginosa UFPEDA 614 in solid-state culture. Appl Microbiol Biotechnol 81(3):441–448. https://doi.org/10.1007/s00253-008-1663-3
Article
CAS
PubMed
Google Scholar
Chen J, Wu Q, Hua Y, Chen J, Zhang H, Wang H (2017) Potential applications of biosurfactant rhamnolipids in agriculture and biomedicine. Appl Microbiol Biotechnol 101(23–24):8309–8319. https://doi.org/10.1007/s00253-017-8554-4
Article
CAS
PubMed
Google Scholar
Chhetri AB, Watts KC, Rafiqul Islam M (2008) Waste cooking oil as an alternate feedstock for biodiesel production. Energies 1:3–18. https://doi.org/10.3390/en1010003
Article
CAS
Google Scholar
Choe E, Min D (2007) Chemistry of deep-fat frying oils. J Food Sci 72:77–86. https://doi.org/10.1111/j.1750-3841.2007.00352.x
Article
CAS
Google Scholar
Chong H, Li Q (2017) Microbial production of rhamnolipids: opportunities, challenges and strategies. Microb Cell Fact 16(1):137. https://doi.org/10.1186/s12934-017-0753-2
Article
CAS
PubMed
PubMed Central
Google Scholar
Dobler L, Vilela LF, Almeida RV, Neves BC (2016) Rhamnolipids in perspective: gene regulatory pathways, metabolic engineering, production and technological forecasting. N Biotechnol 22(1):123–135. https://doi.org/10.1016/j.nbt.2015.09.005
Article
CAS
Google Scholar
El-Housseiny GS, Aboshanab KM, Aboulwafa MM, Hassouna NA (2016) Optimization of rhamnolipid production by P. aeruginosa isolate P6. J Surfact Deterg 19:943–955. https://doi.org/10.1007/s11743-016-1845-4
Article
CAS
Google Scholar
El-Housseiny GS, Aboshanab KM, Aboulwafa MM, Hassouna NA (2019) Rhamnolipid production by a gamma ray-induced Pseudomonas aeruginosa mutant under solid state fermentation. AMB Express. 9(1):7. https://doi.org/10.1186/s13568-018-0732-y
Article
PubMed
PubMed Central
Google Scholar
Eraqi WA, Yassin AS, Ali AE, Amin MA (2016) Utilization of crude glycerol as a substrate for the production of rhamnolipid by P. aeruginosa. Biotechnol Res Int 2016:3464509. https://doi.org/10.1155/2016/3464509
Article
CAS
PubMed
PubMed Central
Google Scholar
George S, Jayachandran K (2012) Production and characterization of rhamnolipid biosurfactant from waste frying coconut oil using a novel P. aeruginosa D. J Appl Microbiol 114:373–383. https://doi.org/10.1111/jam.12069
Article
CAS
Google Scholar
Gudiña EJ, Rodrigues AI, de Freitas V, Azevedo Z, Teixeira JA, Rodrigues LR (2016) Valorization of agro-industrial wastes towards the production of rhamnolipids. Bioresour Technol 212:144–150. https://doi.org/10.1016/j.biortech.2016.04.027
Article
CAS
PubMed
Google Scholar
Gunstone FD (1996) Fatty acid and lipid chemistry. Springer, Boston. https://doi.org/10.1007/978-1-4615-4131-8
Book
Google Scholar
Gutiérrez-Gómez U, Soto-Aceves MP, Servín-González L, Soberón-Chávez G (2018) Overproduction of rhamnolipids in Pseudomonas aeruginosa PA14 by redirection of the carbon flux from polyhydroxyalkanoate synthesis and overexpression of the rhlAB-R operon. Biotechnol Lett 40(11–12):1561–1566. https://doi.org/10.1007/s10529-018-2610-8
Article
CAS
PubMed
Google Scholar
Haba E, Espuny MJ, Busquets M, Manresa A (2000) Screening and production of rhamnolipids by Pseudomonas aeruginosa 47T2 NCIB 40044 from waste frying oils. J Appl Microbiol 88(3):379–387
Article
CAS
Google Scholar
Huang C, Li Y, Tian Y, Hao Z, Chen F, Ma Y (2018) Enhanced rhamnolipid production of Pseudomonas aeruginosa DN1 by metabolic engineering under diverse nutritional factors. J Pet Environ Biotechnol 9(5):384. https://doi.org/10.4172/2157-7463.1000384
Article
Google Scholar
Knothe G, Steidley KR (2009) A comparison of used cooking oils: a very heterogeneous feedstock for biodiesel. Bioresour Technol 100(23):5796–5801. https://doi.org/10.1016/j.biortech.2008.11.064
Article
CAS
PubMed
Google Scholar
Kumar AP, Janardhan A, Radha S, Viswanath B, Narasimha G (2015) Statistical approach to optimize production of biosurfactant by P. aeruginosa 2297. 3 Biotech 5(1):71–79. https://doi.org/10.1007/s13205-014-0203-3
Article
PubMed
Google Scholar
Lotfabad TB, Abassi H, Ahmadkhaniha R, Roostaazad R, Masoomi F, Zahiri HS, Ahmadian G, Vali H, Noghabi KA (2010) Structural characterization of rhamnolipid-type biosurfactant produced by P. aeruginosa MR01: enhancement of di-rhamnolipid proportion using gamma irradiation. Colloids Surf B Biointerfaces 81(2):397–405. https://doi.org/10.1016/j.colsurfb.2010.06.026
Article
CAS
PubMed
Google Scholar
Moya-Ramírez I, Tsaousi K, Michelle R, Marchant R, Jurado-Alameda E, García-Roman M, Banat IM (2015) Rhamnolipid and surfactin production from olive oil mil waste as sole carbon source. Bioresour Technol 198:231–236. https://doi.org/10.1016/j.biortech.2015.09.012
Article
CAS
PubMed
Google Scholar
Müller MM, Kügler J, Henkei M, Melanie G, Hörmann B, Pöhnlein M, Syldatk C, Hausmann R (2012) Rhamnolipids—next generation surfactants? J Biotechnol 162(4):366–380. https://doi.org/10.1016/j.jbiotec.2012.05.022
Article
CAS
PubMed
Google Scholar
Mulligan CN, Gibbs BF (1989) Correlation of nitrogen metabolism with biosurfactant production by Pseudomonas aeruginosa. Appl Environ Microbiol 55(11):3016–3019
CAS
PubMed
PubMed Central
Google Scholar
Nicolo MS, Cambria MG, Impallomeni G, Rizzo MG, Pellicorio C, Ballistreri A, Guglielmino SPP (2017) Carbon source effects on the mono/dirhamnolipid ratio produced by P aeruginosa L05, a new human respiratory isolate. N Biotechnol 39(2):36–41. https://doi.org/10.1016/j.nbt.2017.05.013
Article
CAS
PubMed
Google Scholar
Ozdal M, Gurkok S, Ozdal OG (2017) Optimization of rhamnolipid production by P. aeruginosa OG1 using waste frying oil and chicken feather peptone. 3 Biotech 7(2):117. https://doi.org/10.1007/s13205-017-0774-x
Article
PubMed
PubMed Central
Google Scholar
Pacwa-Plociniczak M, Plaza GA, Piotrowska-Seget Z, Cameotra SS (2011) Environmental applications of biosurfactants: recent advances. Int J Mol Sci 12(1):633–654. https://doi.org/10.3390/ijms12010633
Article
CAS
PubMed
PubMed Central
Google Scholar
Panadare DC, Rathod VK (2015) Applications of waste cooking oil other than biodiesel: a review. IJChE 12(3):55–76
Google Scholar
Patil PD, Gude VG, Reddy HK, Muppaneni T, Deng S (2012) Biodiesel production from waste cooking oil using sulfuric acid and microwave irradiation processes. J Environ Prot 3(1):107. https://doi.org/10.4236/jep.2012.31013
Article
CAS
Google Scholar
Rahman PKSM, Gakpe E (2008) Production, characterization and applications of biosurfactants-review. Biotechnol 7(2):360–370. https://doi.org/10.3923/biotech.2008.360.370
Article
CAS
Google Scholar
Rojo F (2010) Carbon catabolite repression in Pseudomonas: optimizing metabolic versatility and interactions with the environment. FEMS Microbiol Rev 34(5):658–684. https://doi.org/10.1111/j.1574-6976.2010.00218.x
Article
CAS
PubMed
Google Scholar
Samykannu M, Achary A (2017) Utilization of agro-industry residue for rhamnolipid production by P. aeruginosa AMB AS7 and its application in chromium removal. Appl Biochem Biotechnol 183(1):70–90. https://doi.org/10.1007/s12010-017-2431-6
Article
CAS
PubMed
Google Scholar
Sathi-Reddy K, Yahya-Khan M, Archana K, Reddy G, Hameeda B (2016) Utilization of mango kernel oil for the rhamnolipid production by P. aeruginosa DR1 towards its application as biocontrol agent. Bioresour Technol 221:291–299. https://doi.org/10.1016/j.biortech.2016.09.041
Article
CAS
PubMed
Google Scholar
Sekhon-Randhawa KK, Rahman P (2014) Rhamnolipid biosurfactants—past, present, and future scenario of global market. Front Microbiol 5:454. https://doi.org/10.3389/fmicb.2014.00454
Article
PubMed
PubMed Central
Google Scholar
Sharma R, Singh J, Verma N (2018) Optimization of rhamnolipid production from Pseudomonas aeruginosa PBS towards application for microbial enhanced oil recovery. 3 Biotech 8(1):20. https://doi.org/10.1007/s13205-017-1022-0
Article
PubMed
Google Scholar
Shoeb E, Akhlaq F, Badar U, Akhter J, Imtiaz S (2013) Classification and industrial applications of biosurfactants. SAVAP Int. 4(3):243–252
Google Scholar
Thavasi R, Sharma S, Jayalakshmi S (2011) Evaluation of screening methods for the isolation of biosurfactant producing marine bacteria. J Pet Environ Biotechnol S 1:001. https://doi.org/10.4172/2157-7463
Article
Google Scholar
Wang Q, Fang X, Bai B, Liang X, Shuler PJ, Goddard WA III, Tang Y (2007) Engineering bacteria for production of rhamnolipid as an agent for enhanced oil recovery. Biotechnol Bioeng 98(4):842–853. https://doi.org/10.1002/bit.21462
Article
CAS
PubMed
Google Scholar
Warner K, Mounts TL (1993) Frying stability of soybean and canola oils with modified fatty acid compositions. J Am Oil Chem Soc 70(10):983–988. https://doi.org/10.1007/BF02543024
Article
CAS
Google Scholar
Yoon BK, Jackman JA, Valle-González ER, Cho N-J (2018) Antibacterial free fatty acids and monoglycerides: biological activities, experimental testing, and therapeutic applications. Int J Mol Sci 19(4):1114. https://doi.org/10.3390/ijms19041114
Article
CAS
PubMed Central
Google Scholar
Yu Y, Lee C, Kim J, Hwang S (2005) Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol Bioeng 89(6):670–679. https://doi.org/10.1002/bit.20347
Article
CAS
PubMed
Google Scholar
Zhu L, Yang X, Xue C, Chen Y, Qu L, Lu W (2012) Enhanced rhamnolipids production by Pseudomonas aeruginosa based on a pH stage-controlled fed-batch fermentation process. Bioresour Technol 117:208–213. https://doi.org/10.1016/j.biortech.2012.04.091
Article
CAS
PubMed
Google Scholar