Ahmed MH, El-Hashash MA, Marzouk MI, El-Naggar AM (2019) Design, synthesis, and biological evaluation of novel pyrazole, oxazole, and pyridine derivatives as potential anticancer agents using mixed chalcone. J Heterocycl Chem 56(1):114–123
Article
CAS
Google Scholar
Cain RB, Houghton C, Wright KA (1974) Microbial metabolism of the pyridine ring. Metabolism of 2- and 3-hydroxypyridines by the maleamate pathway in Achromobacter sp. Biochem J 140(2):293–300
Article
CAS
PubMed
PubMed Central
Google Scholar
Fetzner S (1998) Bacterial degradation of pyridine, indole, quinoline, and their derivatives under different redox conditions. Appl Microbiol Biotechnol 49(3):237–250
Article
CAS
Google Scholar
Garcia Linares G, Parraud G, Labriola C, Baldessari A (2012) Chemoenzymatic synthesis and biological evaluation of 2- and 3-hydroxypyridine derivatives against Leishmania mexicana. Bioorg Med Chem 20:4614–4624
Article
CAS
PubMed
Google Scholar
Han J, Guo X, Liu Y, Fu Y, Yan R, Chen B (2017) One-pot synthesis of benzene and pyridine derivatives via copper-catalyzed coupling reactions. Adv Synth Catal 359(15):2676–2681
Article
CAS
Google Scholar
Hou C, Shen J, Jiang X, Zhang D, Sun X, Li J, Han W, Liu X, Wang L (2018) Enhanced anoxic biodegradation of pyridine coupled to nitrification in an inner loop anoxic/oxic-dynamic membrane bioreactor (A/O-DMBR). Bioresour Technol 267:626–633
Article
CAS
PubMed
Google Scholar
Houghton C, Cain RB (1972) Microbial metabolism of the pyridine ring. Formation of pyridinediols (dihydroxypyridines) as intermediates in the degradation of pyridine compounds by micro-organisms. Biochem J 130(3):879–893
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu C, Zhao S, Li K, Yu H (2019) Microbial degradation of nicotinamide by a strain Alcaligenes sp. P156. Sci Rep 9:3647
Article
PubMed
PubMed Central
Google Scholar
Jimenez I, Canales A, Jimenez-Barbero J, Ginalski K, Rychlewski L, Garcia L, Diaz E (2008) Deciphering the genetic determinants for aerobic nicotinic acid degradation: the nic cluster from Pseudomonas putida KT2440. Proc Natl Acad Sci USA 105:11329–11334
Article
CAS
PubMed
Google Scholar
Kaiser JP, Bollag JM (1991) Metabolism of pyridine and 3-hydroxypyridine under aerobic, denitrifying and sulfate-reducing conditions. Experientia 47(3):292–296
Article
CAS
Google Scholar
Kaiser JP, Feng Y, Bollag JM (1996) Microbial metabolism of pyridine, quinoline, acridine, and their derivatives under aerobic and anaerobic conditions. Microbiol Rev 60(3):483–498
CAS
PubMed
PubMed Central
Google Scholar
Kost A, Modyanova L (1978) Microbiological transformation of pyridine derivatives. Chem Heterocycl Compd 14(10):1049–1062
Article
Google Scholar
Kuhn EP, Suflita JM (1989) Microbial degradation of nitrogen, oxygen and sulfur heterocyclic compounds under anaerobic conditions: studies with aquifer samples. Environ Toxicol Chem 8(12):1149–1158
Article
CAS
Google Scholar
O’Hagan D (2000) Pyrrole, pyrrolidine, pyridine, piperidine and tropane alkaloids. Nat Prod Rep 17(5):435–446
Article
PubMed
Google Scholar
Qiu J, Zhao L, Xu S, Chen Q, Chen L, Liu B, Hong Q, Lu Z, He J (2019) Identification and characterization of a novel pic gene cluster responsible for picolinic acid degradation in Alcaligenes faecalis JQ135. bioRxiv. https://doi.org/10.1101/530550
Article
Google Scholar
Richards DJ, Shieh WK (1986) Biological fate of organic priority pollutants in the aquatic environment. Water Res 20(9):1077–1090
Article
CAS
Google Scholar
Sabot C, Oueis E, Brune X, Renard PY (2012) Synthesis of polysubstituted 3-hydroxypyridines via the revisited hetero-Diels-Alder reaction of 5-alkoxyoxazoles with dienophiles. Chem Commun 48:768–770
Article
CAS
Google Scholar
Scriven EF, Murugan R (1996) Pyridine and pyridine derivatives. Kirk-Othmer encyclopedia of chemical technology. Wiley Online Library, London. https://doi.org/10.1002/0471238961.1625180919031809.a01.pub2
Book
Google Scholar
Shi J, Han Y, Xu C, Han H (2018) Anaerobic bioaugmentation hydrolysis of selected nitrogen heterocyclic compound in coal gasification wastewater. Bioresour Technol. https://doi.org/10.1016/j.biortech.2018.12.113
Article
PubMed
Google Scholar
Sims GK, O’Loughlin EJ, Crawford RL (1989) Degradation of pyridines in the environment. Crit Rev Environ Sci Technol 19(4):309–340
CAS
Google Scholar
Tang H, Yao Y, Wang L, Yu H, Ren Y, Wu G, Xu P (2012) Genomic analysis of Pseudomonas putida: genes in a genome island are crucial for nicotine degradation. Sci Rep 2:377
Article
PubMed
PubMed Central
Google Scholar
Tang H, Wang L, Wang W, Yu H, Zhang K, Yao Y, Xu P (2013) Systematic unraveling of the unsolved pathway of nicotine degradation in Pseudomonas. PLoS Genet 9(10):e1003923
Article
PubMed
PubMed Central
Google Scholar
Treiber N, Schulz G (2008) Structure of 2,6-dihydroxypyridine 3-hydroxylase from a nicotine-degrading pathway. J Mol Biol 379:94–104
Article
CAS
PubMed
Google Scholar
Vaitekūnas J, Gasparavičiūtė R, Rutkienė R, Tauraitė D, Meškys R (2015) A 2-hydroxypyridine catabolism pathway in Rhodococcus rhodochrous strain PY11. Appl Environ Microbiol 82:1264–1273
Article
PubMed
Google Scholar
Wang S, Huang H, Xie K, Xu P (2012) Identification of nicotine biotransformation intermediates by Agrobacterium tumefaciens strain S33 suggests a novel nicotine degradation pathway. Appl Microbiol Biotechnol 95:1567–1578
Article
CAS
PubMed
Google Scholar
Watson GK, Houghton C, Cain RB (1974) Microbial metabolism of the pyridine ring. The metabolism of pyridine-3,4-diol (3,4-dihydroxypyridine) by Agrobacterium sp. Biochem J 140(2):277–292. https://doi.org/10.1042/bj1400277
Article
CAS
PubMed
PubMed Central
Google Scholar
Wen D, Zhang J, Xiong R, Liu R, Chen L (2013) Bioaugmentation with a pyridine-degrading bacterium in a membrane bioreactor treating pharmaceutical wastewater. J Environ Sci 25(11):2265–2271
Article
CAS
Google Scholar
Yao Y, Tang H, Ren H, Yu H, Wang L, Xu P (2012) Genome sequence of a nicotine-degrading strain of Arthrobacter. J Bacteriol 194(20):5714–5715
Article
CAS
PubMed
PubMed Central
Google Scholar
Yao Y, Tang H, Ren H, Yu H, Wang L, Zhang W, Behrman EJ, Xu P (2013) Iron(II)-dependent dioxygenase and N-formylamide deformylase catalyze the reactions from 5-hydroxy-2-pyridone to maleamate. Sci Rep 3:3235
Article
PubMed
PubMed Central
Google Scholar
Yu H, Tang H, Li Y, Xu P (2015) Molybdenum-containing nicotine hydroxylase genes in a nicotine degradation pathway that is a variant of the pyridine and pyrrolidine pathways. Appl Environ Microbiol 81:8330–8338
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu H, Zhao S, Lu W, Wang W, Guo L (2018) A novel gene, encoding 3-aminobenzoate 6-monooxygenase, involved in 3-aminobenzoate degradation in Comamonas sp. strain QT12. Appl Microbiol Biotechnol 102:4843–4852
Article
CAS
PubMed
Google Scholar
Zhang Y, Zhang Y, Xiong J, Zhao Z, Chai T (2018) The enhancement of pyridine degradation by Rhodococcus KDPy1 in coking wastewater. FEMS Microbiol Lett. https://doi.org/10.1093/femsle/fny271
Article
PubMed
Google Scholar
Zheng C, Wang Q, Ning Y, Fan Y, Feng S, He C, Zhang TC, Shen Z (2017) Isolation of a 2-picolinic acid-assimilating bacterium and its proposed degradation pathway. Bioresour Technol 245:681–688
Article
CAS
PubMed
Google Scholar