Asthana N, Yadav SP, Ghosh JK (2004) Dissection of antibacterial and toxic activity of melittin: a leucine zipper motif plays a crucial role in determining its hemolytic activity but not antibacterial activity. J Biol Chem 279:55042–55050. https://doi.org/10.1074/jbc.M408881200
Article
CAS
PubMed
Google Scholar
Blondelle SE, Houghten RA (1991) Hemolytic and antimicrobial activities of the twenty-four individual omission analogues of melittin. Biochemistry 30:4671–4678. https://doi.org/10.1021/bi00233a006
Article
CAS
PubMed
Google Scholar
Bolintineanu DS, Vivcharuk V, Kaznessis YN (2012) Multiscale models of the antimicrobial peptide protegrin-1 on gram-negative bacteria membranes. Int J Mol Sci 13:11000–11011. https://doi.org/10.3390/ijms130911000
Article
CAS
PubMed
PubMed Central
Google Scholar
Cho J, Hwang IS, Choi H, Hwang JH, Hwang JS, Lee DG (2012) The novel biological action of antimicrobial peptides via apoptosis induction. J Microbiol Biotechnol 22:1457–1466
Article
CAS
Google Scholar
Costa CFD, Pinheiro AC, Almeida MVD, Lourenço MCS, Souza MVND (2012) Synthesis and antitubercular activity of novel amino acid derivatives. Chem Biol Drug Des 79:216–222. https://doi.org/10.1111/j.1747-0285.2011.01269.x
Article
CAS
PubMed
Google Scholar
Durrant JD, Amaro RE (2015) Machine-learning techniques applied to antibacterial drug discovery. Chem Biol Drug Des 85:14–21. https://doi.org/10.1111/cbdd.12423
Article
CAS
PubMed
PubMed Central
Google Scholar
Fabbretti A, Brandi L, Petrelli D, Pon CL, Castañedo NR, Medina R, Gualerzi CO (2012) The antibiotic furvina® targets the p-site of 30 s ribosomal subunits and inhibits translation initiation displaying start codon bias. Nucleic Acids Res 40:10366. https://doi.org/10.1093/nar/gks822
Article
CAS
PubMed
PubMed Central
Google Scholar
Fehlbaum P, Bulet P, Chernysh S, Briand JP, Roussel JP, Letellier L, Hetru C, Hoffmann JA (1996) Structure-activity analysis of thanatin, a 21-residue inducible insect defense peptide with sequence homology to frog skin antimicrobial peptides. Proc Natl Acad Sci USA 93:1221–1225
Article
CAS
Google Scholar
Gajski G, Garajvrhovac V (2011) Bee venom induced cytogenetic damage and decreased cell viability in human white blood cells after treatment in vitro: a multi-biomarker approach. Environ Toxicol Pharmacol 32:201–211. https://doi.org/10.1016/j.etap.2011.05.004
Article
CAS
PubMed
Google Scholar
Gajski G, Domijan AM, Žegura B, Štern A, Gerić M, Novak JI, Vrhovac I, Madunić J, Breljak D, Filipič M, Garaj-Vrhovac V (2016) Melittin induced cytogenetic damage, oxidative stress and changes in gene expression in human peripheral blood lymphocytes. Toxicon 110:56–67. https://doi.org/10.1016/j.toxicon.2015.12.005
Article
CAS
PubMed
Google Scholar
Gao B, Zhu SY (2012) Alteration of the mode of antibacterial action of a defensin by the amino-terminal loop substitution. Biochem Biophys Res Commun 426:630–635. https://doi.org/10.1016/j.bbrc.2012.08.143
Article
CAS
PubMed
Google Scholar
Godballe T, Nilsson LL, Petersen PD, Jenssen H (2011) Antimicrobial β-peptides and α-peptoids. Chem Biol Drug Des 77:107–116. https://doi.org/10.1111/j.1747-0285.2010.01067.x
Article
CAS
PubMed
Google Scholar
Goossens H, Ferech M, Vander SR, Elseviers M, Group EP (2005) Outpatient antibiotic use in europe and association with resistance: a cross-national database study. Lancet 365:579–587. https://doi.org/10.1016/S0140-6736(05)17907-0
Article
PubMed
Google Scholar
Habermann E, Jentsch J (1967) Sequence analysis of melittin from tryptic and peptic degradation products. Hoppe Seylers Z Physiol Chem 348:37–50
Article
CAS
Google Scholar
Jahnsen RO, Sandbergschaal A, Frimodtmøller N, Nielsen HM, Franzyk H (2015) End group modification: efficient tool for improving activity of antimicrobial peptide analogues towards gram-positive bacteria. Eur J Pharm Biopharm 95:40–46. https://doi.org/10.1016/j.ejpb.2015.01.013
Article
CAS
PubMed
Google Scholar
Juvvadi P, Vunnam S, Merrifield EL, Boman HG, Merrifield RB (2010) Hydrophobic effects on antibacterial and channel-forming properties of cecropin a–melittin hybrids. J Pept Sci 2:223–232. https://doi.org/10.1002/psc.63
Article
Google Scholar
Kim H, Jang JH, Kim SC, Cho JH (2016) Enhancement of the antimicrobial activity and selectivity of GNU7 against Gram-negative bacteria by fusion with LPS-targeting peptide. Peptides 82:60–66. https://doi.org/10.1016/j.peptides.2016.05.010
Article
CAS
PubMed
Google Scholar
Lee JK, Park Y (2014) Mechanism of action of antimicrobial peptides against bacterialn membrane. J Bacteriol Virol 44:140–151
Article
CAS
Google Scholar
Lee TH, Hall KN, Aguilar MI (2016) Antimicrobial peptide structure and mechanism of action: a focus on the role of membrane structure. Curr Top Med Chem 16:25–39. https://doi.org/10.2174/1568026615666150703121700
Article
CAS
PubMed
Google Scholar
Leonardo A, Gianluca P, Fernando S, Morero RD, Augusto B (2012) A new hybrid bacteriocin, ent35-mccv, displays antimicrobial activity against pathogenic gram-positive and gram-negative bacteria. Febs Open Bio 2:12–19. https://doi.org/10.1016/j.fob.2012.01.002
Article
CAS
Google Scholar
Li S, Yan H, Liu G, He B, Jiang L (2003) Studies on synthesis and biological activities of analogues of melittin. Chem Res Chin Univ 24:449–453
CAS
Google Scholar
Malmsten M (2014) Antimicrobial peptides. Upsala J Med Sci 119:199–204
Article
Google Scholar
Mandard N, Sodano P, Labbe H, Bonmatin JM, Bulet P, Hetru C, Ptak M, Vovelle F (1998) Solution structure of thanatin, a potent bactericidal and fungicidal insect peptide, determined from proton two-dimensional nuclear magnetic resonance data. FEBS J 256:404–410. https://doi.org/10.1046/j.1432-1327.1998.2560404.x
Article
CAS
Google Scholar
Mangoni M, Bhunia A (2016) Editorial: antimicrobial peptides in medicinal chemistry: advances and applications. Curr Top Med Chem 16:2–3. https://doi.org/10.2174/1568026615999150914160355
Article
CAS
PubMed
Google Scholar
Memariani H, Shahbazzadeh D, Sabatier JM, Memariani M, Karbalaeimahdi A, Bagheri KP (2016) Mechanism of action and invitro, activity of short hybrid antimicrobial peptide pv3 against pseudomonas aeruginosa. Biochem Biophys Res Commun 479:103–108. https://doi.org/10.1016/j.bbrc.2016.09.045
Article
CAS
PubMed
Google Scholar
Orrapin S, Intorasoot S (2014) Recombinant expression of novel protegrin-1 dimer and LL-37-linker–histatin-5 hybrid peptide mediated biotin carboxyl carrier protein fusion partner. Protein Expr Purif 93:46–53. https://doi.org/10.1016/j.pep.2013.10.010
Article
CAS
PubMed
Google Scholar
Saini SS, Chopra AK, Peterson JW (1999) Milittin activates endogenous phospholipase D during cytolysis of humanmonocytic leukemia cells. Toxicon 37:1605–1619. https://doi.org/10.1016/S0041-0101(99)00110-5
Article
CAS
PubMed
Google Scholar
Sun X, Chen S, Li S, Yan H, Fan Y, Mi H (2005) Deletion of two c-terminal Gln residues of 12-26-residue fragment of melittin improves its antimicrobial activity. Peptides 26:369–375. https://doi.org/10.1016/j.peptides.2004.10.004
Article
CAS
PubMed
Google Scholar
Taguchi S, Kuwasako K, Suenaga A, Okada M, Momose H (2000) Functional mapping against Escherichia coli for the broad-spectrum antimicrobial peptide, thanatin, based on an in vivo monitoring assay system. J Biochem 128:745–754. https://doi.org/10.1093/oxfordjournals.jbchem.a022811
Article
CAS
PubMed
Google Scholar
Ursic-Bedoya R, Buchhop J, Joy JB, Durvasula R, Lowenberger C (2011) Prolixicin: a novel antimicrobial peptide isolated from Rhodnius prolixus with differential activity against bacteria and trypanosoma cruzi. Insect Mol Biol 20:775–786. https://doi.org/10.1111/j.1365-2583.2011.01107.x
Article
CAS
PubMed
Google Scholar
Wachinger M, Kleinschmidt A, Winder D, von Pechmann N, Ludvigsen A, Neumann M, Holle R, Salmons B, Erfle V, Brack-Werner R (1998) Antimicrobial peptides melittin and cecropin inhibit replication of human immunodeficiency virus 1 by suppressing viral geneexpression. J Gen Virol 79:731–740. https://doi.org/10.1099/0022-1317-79-4-731
Article
CAS
PubMed
Google Scholar
Walsh EG, Maher S, Devocelle M, O’Brien PJ, Baird AW, Brayden DJ (2011) High content analysis to determine cytotoxicity of the antimicrobial peptide, melittin and selected structural analogs. Peptides 32:1764–1773. https://doi.org/10.1016/j.peptides.2011.06.006
Article
CAS
PubMed
Google Scholar
Wang J, Zhong W, Lin D, Xia F, Wu W, Zhang H, Lv L, Liu S, He J (2015) Antimicrobial peptides derived from fusion peptides of influenza a viruses, a promising approach to designing potent antimicrobial agents. Chem Biol Drug Des 86:487–495. https://doi.org/10.1111/cbdd.12511
Article
CAS
PubMed
Google Scholar
Wang Y, Yang YJ, Chen YN, Zhao HY, Zhang S (2016) Computer-aided design, structural dynamics analysis, and in vitro susceptibility test of antibacterial peptides incorporating unnatural amino acids against microbial infections. Comput Methods Programs Biomed 134:215–223. https://doi.org/10.1016/j.cmpb.2016.06.005
Article
PubMed
Google Scholar
Wei W, Wu XM, Li YJ (2010) Experimental methodology of pharmacology. People’s Medical Publishing House, Shelton, pp 503–504
Google Scholar
Wu X, Zhao B, Cheng Y, Yang Y, Huang C, Meng X, Wu B, Zhang L, Lv X, Li J (2015) Melittin induces ptch1 expression by down-regulating mecp2 in human hepatocellular carcinoma smmc-7721 cells. Toxicol Appl Pharmcol 288:74–83. https://doi.org/10.1016/j.taap.2015.07.010
Article
CAS
Google Scholar
Wu X, Singh AK, Wu X, Lyu Y, Bhunia AK, Narsimhan G (2016) Characterization of antimicrobial activity against listeria and cytotoxicity of native melittin and its mutant variants. Colloid Surf B 143:194–205. https://doi.org/10.1016/j.colsurfb.2016.03.037
Article
CAS
Google Scholar
Xia X, Cheng L, Zhang S, Wang L, Hu J (2018) The role of natural antimicrobial peptides during infection and chronic inflammation. Anton Leeuw 111:5–26. https://doi.org/10.1007/s10482-017-0929-0
Article
CAS
Google Scholar
Yan H, Li SX, Mi H, He B (2003) Individual substitution analogs of mel (12-26), melittin’s c-terminal 15-residue peptide: their antimicrobial and hemolytic actions. FEBS Lett 554:100–104. https://doi.org/10.1016/S0014-5793(03)01113-X
Article
CAS
PubMed
Google Scholar