Bamba T, Hasunuma T, Kondo A (2016) Disruption of PHO13 improves ethanol production via the xylose isomerase pathway. AMB Express. 6(1):4. https://doi.org/10.1186/s13568-015-0175-7
Article
PubMed
PubMed Central
CAS
Google Scholar
Bhattacharya AS, Bhattacharya A, Pletschke BI (2015) Synergism of fungal and bacterial cellulases and hemicellulases: a novel perspective for enhanced bio-ethanol production. Biotechnol Lett 37(6):1117–1129. https://doi.org/10.1007/s10529-015-1779-3
Article
PubMed
CAS
Google Scholar
Björkqvist S, Ansell R, Adler L, Lidén G (1997) Physiological response to anaerobicity of glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae. Appl Environ Microbiol 63(1):128–132
PubMed
PubMed Central
Google Scholar
Brat D, Boles E, Wiedemann B (2009) Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae. Appl Environ Microbiol 75(8):2304–2311. https://doi.org/10.1128/AEM.02522-08
Article
PubMed
PubMed Central
CAS
Google Scholar
Collard F, Baldin F, Gerin I, Bolsée J, Noël G, Graff J, Veiga-da-Cunha M, Stroobant V, Vertommen D, Houddane A, Rider MH, Linster CL, Van Schaftingen E, Bommer GT (2016) A conserved phosphatase destroys toxic glycolytic side products in mammals and yeast. Nat Chem Biol 12(8):601–607. https://doi.org/10.1038/nchembio.2104 (Epub 2016 Jun 13)
Article
PubMed
CAS
Google Scholar
Eriksson P, André L, Ansell R, Blomberg A, Adler L (1995) Cloning and characterization of GPD2, a second gene encoding sn-glycerol 3-phosphate dehydrogenase (NAD+) in Saccharomyces cerevisiae, and its comparison with GPD1. Mol Microbiol 17(1):95–107. https://doi.org/10.1111/j.1365-2958.1995.mmi_17010095.x
Article
PubMed
CAS
Google Scholar
Gietz RD, Schiestl RH (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2(1):31–34. https://doi.org/10.1038/nprot.2007.13
Article
PubMed
CAS
Google Scholar
Gonçalves DL, Matsushika A, de Sales BB, Goshima T, Bon EP, Stambuk BU (2014) Xylose and xylose/glucose co-fermentation by recombinant Saccharomyces cerevisiae strains expressing individual hexose transporters. Enzyme Microb Technol 63:13–20. https://doi.org/10.1016/j.enzmictec.2014.05.003
Article
PubMed
CAS
Google Scholar
Henningsen BM, Hon S, Covalla SF, Sonu C, Argyros DA, Barrett TF, Wiswall E, Froehlich AC, Zelle RM (2015) Increasing anaerobic acetate consumption and ethanol yields in Saccharomyces cerevisiae with NADPH-specific alcohol dehydrogenase. Appl Environ Microbiol 81(23):8108–8117. https://doi.org/10.1128/AEM.01689-15
Article
PubMed
PubMed Central
CAS
Google Scholar
Ismail KS, Sakamoto T, Hasunuma T, Kondo A (2013) Time-based comparative transcriptomics in engineered xylose-utilizing Saccharomyces cerevisiae identifies temperature-responsive genes during ethanol production. J Ind Microbiol Biotechnol 40(9):1039–1050. https://doi.org/10.1007/s10295-013-1293-3 (Epub 2013 Jun 9)
Article
PubMed
CAS
Google Scholar
Johansson B, Hahn-Hägerdal B (2002) The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001. FEMS Yeast Res 2(3):277–282. https://doi.org/10.1111/j.1567-1364.2002.tb00095.x
Article
PubMed
CAS
Google Scholar
Karhumaa K, Garcia Sanchez R, Hahn-Hägerdal B, Gorwa-Grauslund MF (2007) Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae. Microb Cell Fact 6:5. https://doi.org/10.1186/1475-2859-6-5
Article
PubMed
PubMed Central
CAS
Google Scholar
Kawaguchi H, Hasunuma T, Ogino C, Kondo A (2016) Bioprocessing of bio-based chemicals produced from lignocellulosic feedstocks. Curr Opin Biotechnol 42:30–39. https://doi.org/10.1016/j.copbio.2016.02.031
Article
PubMed
CAS
Google Scholar
Kim SR, Skerker JM, Kang W, Lesmana A, Wei N, Arkin AP, Jin YS (2013) Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae. PLoS ONE 8(2):e57048. https://doi.org/10.1371/journal.pone.0057048
Article
PubMed
PubMed Central
CAS
Google Scholar
Kim SR, Xu H, Lesmana A, Kuzmanovic U, Au M, Florencia C, Oh EJ, Zhang G, Kim KH, Jin YS (2015) Deletion of PHO13, encoding haloacid dehalogenase type IIA phosphatase, results in upregulation of the pentose phosphate pathway in Saccharomyces cerevisiae. Appl Environ Microbiol 81(5):1601–1609. https://doi.org/10.1128/AEM.03474-14
Article
PubMed
PubMed Central
CAS
Google Scholar
Kobayashi Y, Sahara T, Suzuki T, Kamachi S, Matsushika A, Hoshino T, Ohgiya S, Kamagata Y, Fujimori KE (2017) Genetic improvement of xylose metabolism by enhancing the expression of pentose phosphate pathway genes in Saccharomyces cerevisiae IR-2 for high-temperature ethanol production. J Ind Microbiol Biotechnol. https://doi.org/10.1007/s10295-017-1912-5
Article
PubMed
Google Scholar
Kötter P, Ciriacy M (1993) Xylose fermentation by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 38(6):776–783. https://doi.org/10.1007/BF00167144
Article
Google Scholar
Kötter P, Amore R, Hollenberg CP, Ciriacy M (1990) Isolation and characterization of the Pichia stipitis xylitol dehydrogenase gene, XYL2, and construction of a xylose-utilizing Saccharomyces cerevisiae transformant. Curr Genet 18(6):493–500. https://doi.org/10.1007/BF00327019
Article
PubMed
Google Scholar
Kuriyama H, Seiko Y, Murakami T, Kobayashi H, Sonoda Y (1985) Continuous ethanol fermentation with cell recycling using flocculating yeast. J Ferment Technol 63(2):159–165
CAS
Google Scholar
Kuyper M, Hartog MM, Toirkens MJ, Almering MJ, Winkler AA, van Dijken JP, Pronk JT (2005) Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res 5(4–5):399–409. https://doi.org/10.1016/j.femsyr.2004.09.010
Article
PubMed
CAS
Google Scholar
Lee SM, Jellison T, Alper HS (2014) Systematic and evolutionary engineering of a xylose isomerase-based pathway in Saccharomyces cerevisiae for efficient conversion yields. Biotechnol Biofuels 7(1):122. https://doi.org/10.1186/s13068-014-0122-x
Article
PubMed
PubMed Central
CAS
Google Scholar
Matsushika A, Inoue H, Kodaki T, Sawayama S (2009) Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl Microbiol Biotechnol 84(1):37–53. https://doi.org/10.1007/s00253-009-2101-x
Article
PubMed
CAS
Google Scholar
Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sustain Energy Rev 14:578–597. https://doi.org/10.1016/j.rser.2009.10.003
Article
CAS
Google Scholar
Paulova L, Patakova P, Branska B, Rychtera M, Melzoch K (2014) Lignocellulosic ethanol: technology design and its impact on process efficiency. Biotechnology 33(6Pt2):1091–1107. https://doi.org/10.1016/j.biotechadv.2014.12.002
Article
CAS
Google Scholar
Qi X, Zha J, Liu GG, Zhang W, Li BZ, Yuan YJ (2015) Heterologous xylose isomerase pathway and evolutionary engineering improve xylose utilization in Saccharomyces cerevisiae. Front Microbiol. 6:1165. https://doi.org/10.3389/fmicb.2015.01165
Article
PubMed
PubMed Central
Google Scholar
Reider Apel A, Ouellet M, Szmidt-Middleton H, Keasling JD, Mukhopadhyay A (2016) Evolved hexose transporter enhances xylose uptake and glucose/xylose co-utilization in Saccharomyces cerevisiae. Sci Rep. 6:19512. https://doi.org/10.1038/srep19512
Article
PubMed
PubMed Central
CAS
Google Scholar
Sahara T, Fujimori KE, Nezuo M, Tsukahara M, Tochigi Y, Ohgiya S, Kamagata Y (2014) Draft genome sequence of Saccharomyces cerevisiae IR-2, a useful industrial strain for highly efficient production of bioethanol. Genome Announc. 2(1):e01160–e02013. https://doi.org/10.1128/genomeA.01160-13
Article
PubMed
PubMed Central
Google Scholar
Sedlak M, Ho NW (2004) Characterization of the effectiveness of hexose transporters for transporting xylose during glucose/xylose co-fermentation by a recombinant Saccharomyces yeast. Yeast 21(8):671–684. https://doi.org/10.1002/yea.1060
Article
PubMed
CAS
Google Scholar
Shen Y, Chen X, Peng B, Chen L, Hou J, Bao X (2012) An efficient xylose-fermenting recombinant Saccharomyces cerevisiae strain obtained through adaptive evolution and its global transcription profile. Appl Microbiol Biotechnol 96(4):1079–1091. https://doi.org/10.1007/s00253-012-4418-0
Article
PubMed
CAS
Google Scholar
Träff KL, Otero Cordero RR, van Zyl WH, Hahn-Hägerdal B (2001) Deletion of the GRE3 aldose reductase gene and its influence on xylose metabolism in recombinant strains of Saccharomyces cerevisiae expressing the xylA and XKS1 genes. Appl Environ Microbiol 67(12):5668–5674. https://doi.org/10.1128/AEM.67.12.5668-5674.2001
Article
PubMed
PubMed Central
CAS
Google Scholar
Van Vleet JH, Jeffries TW (2009) Yeast metabolic engineering for hemicellulosic ethanol production. Curr Opin Biotechnol 20(3):300–306. https://doi.org/10.1016/j.copbio.2009.06.001
Article
PubMed
CAS
Google Scholar
Van Vleet JH, Jeffries TW, Olsson L (2008) Deleting the para-nitrophenyl phosphatase (pNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on d-xylose. Metab Eng 10(6):360–369. https://doi.org/10.1016/j.ymben.2007.12.002 (Epub 2007 Dec 27)
Article
PubMed
CAS
Google Scholar
Vilela Lde F, de Araujo VP, Paredes Rde S, Bon EP, Torres FA, Neves BC, Eleutherio EC (2015) Enhanced xylose fermentation and ethanol production by engineered Saccharomyces cerevisiae strain. AMB Express. 5:16. https://doi.org/10.1186/s13568-015-0102-y
Article
PubMed
CAS
Google Scholar
Walfridsson M, Hallborn J, Penttilä M, Keränen S, Hahn-Hägerdal B (1995) Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase. Appl Environ Microbiol 61(12):4184–4190
PubMed
PubMed Central
CAS
Google Scholar
Walfridsson M, Bao X, Anderlund M, Lilius G, Bülow L, Hahn-Hägerdal B (1996) Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase. Appl Environ Microbiol 62(12):4648–4651
PubMed
PubMed Central
CAS
Google Scholar
Xu H, Kim S, Sorek H, Lee Y, Jeong D, Kim J, Oh EJ, Yun EJ, Wemmer DE, Kim KH, Kim SR, Jin YS (2016) PHO13 deletion-induced transcriptional activation prevents sedoheptulose accumulation during xylose metabolism in engineered Saccharomyces cerevisiae. Metab Eng 34:88–96. https://doi.org/10.1016/j.ymben.2015.12.007
Article
PubMed
CAS
Google Scholar
Yamanaka K (1969) Inhibition of d-xylose isomerase by pentitols and d-Xylose. Arch Biochem Biophys 131(2):502–506. https://doi.org/10.1016/0003-9861(69)90422-6
Article
PubMed
CAS
Google Scholar
Young E, Lee SM, Alper H (2010) Optimizing pentose utilization in yeast: the need for novel tools and approaches. Biotechnol Biofuels 3:24. https://doi.org/10.1186/1754-6834-3-24
Article
PubMed
PubMed Central
CAS
Google Scholar