Ahn H, Kim J, Kim WJ (2017) Isolation and characterization of bacteriocin-producing Pediococcus acidilactici HW01 from malt and its potential to control beer spoilage lactic acid bacteria. Food Control 80:59–66. https://doi.org/10.1016/j.foodcont.2017.04.022
Article
CAS
Google Scholar
Al-Zoreky NS, Al-Taher AY (2015) Antibacterial activity of spathe from Phoenix dactylifera L. against some food-borne pathogens. Ind Crops Prod 65:241–246. https://doi.org/10.1016/j.indcrop.2014.12.014
Article
Google Scholar
Ashraf MT, Fang C, Bochenski T, Cybulska I, Alassali A (2016) Estimation of bioenergy potential for local biomass in the United Arab Emirates. EJFA 28:99–106. https://doi.org/10.9755/ejfa.2015-04-060
Article
Google Scholar
Bastidas-Oyanedel JR, Fang C, Almardeai S, Javid U, Yousuf A, Schmidt JE (2016) Waste biorefinery in arid/semi-arid regions. Bioresour Technol 215:21–28. https://doi.org/10.1016/j.biortech.2016.04.010
Article
PubMed
CAS
Google Scholar
Bayrock DP, Thomas KC, Ingledew WM (2003) Control of Lactobacillus contaminants in continuous fuel ethanol fermentations by constant or pulsed addition of penicillin G. Appl Microbiol Biotechnol 62:498–502. https://doi.org/10.1007/s00253-003-1324-5
Article
PubMed
CAS
Google Scholar
Bischoff KM, Skinner-Nemec KA, Leathers TD (2007) Antimicrobial susceptibility of Lactobacillus species isolated from commercial ethanol plants. J Ind Microbiol Biotechnol 34:739–744. https://doi.org/10.1007/s10295-007-0250-4
Article
PubMed
CAS
Google Scholar
Ceccato-Antonini SR (2018) Conventional and nonconventional strategies for controlling bacterial contamination in fuel ethanol fermentations. World J Microb Biotechnol 34:80. https://doi.org/10.1007/s11274-018-2463-2
Article
CAS
Google Scholar
Chang IS, Kim BH, Shin PK (1997) Use of sulfite and hydrogen peroxide to control bacterial contamination in ethanol these include: use of sulfite and hydrogen peroxide to control bacterial contamination in ethanol fermentation. Appl Environ Microbiol 63:1–6
PubMed
PubMed Central
CAS
Google Scholar
De Oliva-Neto P, Yokoya F (1998) Effect of 3,4,4′-trichlorocarbanilide on growth of lactic acid bacteria contaminants in alcoholic fermentation. Bioresour Technol 63:17–21. https://doi.org/10.1016/S0960-8524(97)00092-8
Article
CAS
Google Scholar
Dhamankar H, Tarasova Y, Martin CH, Prather KLJ (2014) Engineering E. coli for the biosynthesis of 3-hydroxy-butyrolactone (3HBL) and 3,4-dihydroxybutyric acid (3,4-DHBA) as value-added chemicals from glucose as a sole carbon source. Metab Eng 25:72–81. https://doi.org/10.1016/j.ymben.2014.06.004
Article
PubMed
CAS
Google Scholar
Dhayanithi NB, Kumar TTA, Murthy RG, Kathiresan K (2012) Isolation of antibacterials from the mangrove, Avicennia marina and their activity against multi drug resistant Staphylococcus aureus. Asian Pac J Trop Biomed 2:S1892–S1895. https://doi.org/10.1016/S2221-1691(12)60516-4
Article
Google Scholar
Essia Ngang JJ, Letourneau F, Wolniewicz E, Villa P (1990) Inhibition of beet molasses alcoholic fermentation by lactobacilli. Appl Microbiol Biotechnol 33:490–493. https://doi.org/10.1007/BF00172539
Article
Google Scholar
Fang C, Schmidt JE, Cybulska I, Brudecki GP, Frankær CG, Thomsen MH (2015) Hydrothermal pretreatment of date palm (Phoenix dactylifera L.) leaflets and rachis to enhance enzymatic digestibility and bioethanol potential. Biomed Res Int 2015:216454. https://doi.org/10.1155/2015/216454
Article
PubMed
PubMed Central
CAS
Google Scholar
Fleming HP, Etchells JL (1967) Occurrence of an inhibitor of lactic acid bacteria in green olives. Appl Microbiol 15:1178–1184
PubMed
PubMed Central
CAS
Google Scholar
Gaydos JM, Harrington BJ (1982) Agar disk diffusion for the quality control testing of autobac elution disks. Antimicrob Agents Chemother 21:516–518. https://doi.org/10.1128/AAC.21.3.516
Article
PubMed
PubMed Central
CAS
Google Scholar
Gil G, Del Mónaco S, Cerrutti P, Galvagno M (2004) Selective antimicrobial activity of chitosan on beer spoilage bacteria and brewing yeasts. Biotechnol Lett 26:569–574. https://doi.org/10.1023/B:BILE.0000021957.37426.9b
Article
PubMed
CAS
Google Scholar
Gupta A, Hicks MA, Manchester SP, Prather KL (2016) Porting the synthetic d-glucaric acid pathway from Escherichia coli to Saccharomyces cerevisiae. Biotechnol J 11:1201–1208. https://doi.org/10.1002/biot.201500563
Article
PubMed
CAS
Google Scholar
Gyawali R, Ibrahim SA (2014) Natural products as antimicrobial agents. Food Control 46:412–429. https://doi.org/10.1016/j.foodcont.2014.05.047
Article
CAS
Google Scholar
Hendricks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18. https://doi.org/10.1016/j.biortech.2008.05.027
Article
CAS
Google Scholar
Hynes SH, Kjarsgaard DM, Thomas KC, Ingledew WM (1997) Use of virginiamycin to control the growth of lactic acid bacteria during alcohol fermentation. J Ind Microbiol Biotechnol 18:284–291. https://doi.org/10.1038/sj.jim.2900381
Article
PubMed
CAS
Google Scholar
Kchaou W, Abbès F, Mansour R, Blecker C, Attia H, Besbes S (2016) Phenolic profile, antibacterial and cytotoxic properties of second grade date extract from Tunisian cultivars (Phoenix dactylifera L.). Food Chem 194:1048–1055. https://doi.org/10.1016/j.foodchem.2015.08.120
Article
PubMed
CAS
Google Scholar
Khatibi PA, Roach DR, Donovan DM, Hughes SR, Bischoff KM (2014) Saccharomyces cerevisiae expressing bacteriophage endolysins reduce Lactobacillus contamination during fermentation. Biotechnol Biofuels 7:104. https://doi.org/10.1186/1754-6834-7-104
Article
Google Scholar
Leja K, Broda M (2009) The occurrence and identification of microbiological contamination in fuel ethanol production. Acta Sci Pol Technol Aliment 8:25–31
CAS
Google Scholar
Liu M, Bischoff KM, Gill JJ, Mire-Criscione MD, Berry JD, Young R, Summer EJ (2015) Bacteriophage application restores ethanol fermentation characteristics disrupted by Lactobacillus fermentum. Biotechnol Biofuels 8:132. https://doi.org/10.1186/s13068-015-0325-9
Article
PubMed
PubMed Central
CAS
Google Scholar
Makanjuola DB, Tymon A, Springham DG (1992) Some effects of lactic acid bacteria on laboratory-scale yeast fermentations. Enzyme Microb Technol 14:350–357. https://doi.org/10.1016/0141-0229(92)90002-6
Article
CAS
Google Scholar
Murphree CA, Heist EP, Moe LA (2014) Antibiotic resistance among cultured bacterial isolates from bioethanol fermentation facilities across the United States. Curr Microbiol 69:277–285. https://doi.org/10.1007/s00284-014-0583-y
Article
PubMed
CAS
Google Scholar
Muthaiyan A, Limayem A, Ricke SC (2011) Antimicrobial strategies for limiting bacterial contaminants in fuel bioethanol fermentations. Prog Energy Combust Sci 37:351–370. https://doi.org/10.1016/j.pecs.2010.06.005
Article
CAS
Google Scholar
Neyret C, Herry JM, Meylheuc T, Dubois-Brissonnet F (2014) Plant-derived compounds as natural antimicrobials to control paper mill biofilms. J Ind Microbiol Biotechnol 41:87–96. https://doi.org/10.1007/s10295-013-1365-4
Article
PubMed
CAS
Google Scholar
Nwobi A, Cybulska I, Tesfai W, Shatilla Y, Rodríguez J, Thomsen MH (2015) Simultaneous saccharification and fermentation of solid household waste following mild pretreatment using a mix of hydrolytic enzymes in combination with Saccharomyces cerevisiae. Appl Microbiol Biotechnol 99:929–938. https://doi.org/10.1007/s00253-014-5977-z
Article
PubMed
CAS
Google Scholar
Peng J, Zhang L, Gu ZH, Ding ZY, Shi GY (2012) The role of nisin in fuel ethanol production with Saccharomyces cerevisiae. Lett Appl Microbiol 55:128–134. https://doi.org/10.1111/j.1472-765X.2012.03275.x
Article
PubMed
CAS
Google Scholar
Proestos C, Sereli D, Komaitis M (2006) Determination of phenolic compounds in aromatic plants by RP-HPLC and GC-MS. Food Chem 95:44–52. https://doi.org/10.1016/j.foodchem.2004.12.016
Article
CAS
Google Scholar
Ravikumar S, Gnanadesigan M, Suganthi P, Ramalakshmi A (2010) Antibacterial potential of chosen mangrove plants against isolated urinary tract infectious bacterial pathogens. Int J Med Sci 2:94–99
Google Scholar
Rich JO, Bischoff KM, Leathers TD, Anderson AM, Liu S, Skory CD (2018) Resolving bacterial contamination of fuel ethanol fermentations with beneficial bacteria—an alternative to antibiotic treatment. Bioresour Technol 247:357–362. https://doi.org/10.1016/j.biortech.2017.09.067
Article
PubMed
CAS
Google Scholar
Ruckle L, Senn T (2006) Hop acids can efficiently replace antibiotics in ethanol production. Int Sugar J 108:139–147
Google Scholar
Schell DJ, Dowe N, Ibsen KN, Riley CJ, Ruth MF, Lumpkin RE (2007) Contaminant occurrence, identification and control in a pilot-scale corn fiber to ethanol conversion process. Bioresour Technol 98:2942–2948. https://doi.org/10.1016/j.biortech.2006.10.002
Article
PubMed
CAS
Google Scholar
Silva SS, Vitolo M, González JMD, Oliveira RPS (2014) Overview of Lactobacillus plantarum as a promising bacteriocin producer among lactic acid bacteria. Food Res Int 64:527–536. https://doi.org/10.1016/j.foodres.2014.07.041
Article
CAS
Google Scholar
Sluiter A, Ruiz R, Scarlata C, Sluiter JA, Templeton D (2008) Determination of extractives in biomass: laboratory analytical procedure (LAP). Tech Rep. NREL/TP-510-42619 1–9
WHO (2001) WHO Global strategy for containment of antimicrobial strategy for containment of antimicrobial resistance. World Health WHO/CDS/CS 105. WHO/CDS/CSR/DRS/2001.2. p. 99