Abedini R, GhaneGolmohammadi F, PishkamRad R, Pourabed E, Jafarnezhad A, Shobbar ZS, Shahbazi M (2017) Plant dehydrins: shedding light on structure and expression patterns of dehydrin gene family in barley. J Plant Res 130:747–763
Article
CAS
PubMed
Google Scholar
Aguayo P, Sanhueza J, Noriega F, Ochoa M, Lefeuvre R, Navarrete D, Fernández M, Valenzuela S (2016) Overexpression of an SKn-dehydrin gene from Eucalyptus globulus and Eucalyptus nitens enhances tolerance to freezing stress in Arabidopsis. Trees 30:1785–1797
Article
CAS
Google Scholar
Altunoglu YC, Baloglu P, Yer EN, Pekol S, Baloglu MC (2016) Identification and expression analysis of LEA gene family members in cucumber genome. Plant Growth Regul 80:225–241
Article
Google Scholar
Banerjee A, Roychoudhury A (2016) Group II late embryogenesis abundant (LEA) proteins: structural and functional aspects in plant abiotic stress. Plant Growth Regul 79:1–17
Article
CAS
Google Scholar
Bao F, Du D, An Y, Yang W, Wang J, Cheng T, Zhang Q (2017) Overexpression of Prunus mume dehydrin genes in tobacco enhances tolerance to cold and drought. Front Plant Sci 8:151
PubMed
PubMed Central
Google Scholar
Brini F, Saibi W, Amara I, Gargouri A, Masmoudi K, Hanin M (2010) Wheat dehydrin DHN-5 exerts a heat-protective effect on β-glucosidase and glucose oxidase activities. Biosci Biotechnol Biochem 74:1050–1054
Article
CAS
PubMed
Google Scholar
Charfeddine S, Charfeddine M, Saïdi MN, Jbir R, Bouzid RG (2017) Potato dehydrins present high intrinsic disorder and are differentially expressed under ABA and abiotic stresses. Plant Cell Tissue Organ Cult 128:423–435
Article
CAS
Google Scholar
Chen RG, Jing H, Guo WL, Wang SB, Ma F, Pan BG, Gong ZH (2015) Silencing of dehydrin CaDHN1 diminishes tolerance to multiple abiotic stresses in Capsicum annuum L. Plant Cell Rep 34:2189–2200
Article
CAS
PubMed
Google Scholar
Close TJ (1996) Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant 97:795–803
Article
CAS
Google Scholar
Drira M, Saibi W, Brini F, Gargouri A, Masmoudi K, Hanin M (2013) The K-segments of the wheat dehydrin DHN-5 are essential for the protection of lactate dehydrogenase and β-glucosidase activities in vitro. Mol Biotechnol 54:643–650
Article
CAS
PubMed
Google Scholar
Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6:197–208
Article
CAS
PubMed
Google Scholar
Gao J, Lan T (2016) Functional characterization of the late embryogenesis abundant (LEA) protein gene family from Pinus tabuliformis (Pinaceae) in Escherichia coli. Sci Rep 6:19467
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo X, Zhang L, Zhu J, Liu H, Wang A (2017) Cloning and characterization of SiDHN, a novel dehydrin gene from Saussurea involucrata Kar. et Kir. that enhances cold and drought tolerance in tobacco. Plant Sci 256:160–169
Article
CAS
PubMed
Google Scholar
Halder T, Agarwal T, Ray S (2016) Isolation, cloning, and characterization of a novel Sorghum dehydrin (SbDhn2) protein. Protoplasma 253:1475–1488
Article
CAS
PubMed
Google Scholar
Hara M, Monna S, Murata T, Nakano T, Amano S, Nachbar M, Watzig H (2016) The Arabidopsis KS-type dehydrin recovers lactate dehydrogenase activity inhibited by copper with the contribution of His residues. Plant Sci 245:135–142
Article
CAS
PubMed
Google Scholar
Hill W, Jin XL, Zhang XH (2016) Expression of an arctic chickweed dehydrin, CarDHN, enhances tolerance to abiotic stress in tobacco plants. Plant Growth Regul 80:323–334
Article
CAS
Google Scholar
Houde M, Dallaire S, N’Dong D, Sarhan F (2004) Overexpression of the acidic dehydrin WCOR410 improves freezing tolerance in transgenic strawberry leaves. Plant Biotechnol J 2:381–387
Article
CAS
PubMed
Google Scholar
Hu T, Zhou N, Fu M, Qin J, Huang X (2016) Characterization of OsLEA1a and its inhibitory effect on the resistance of E. coli to diverse abiotic stresses. Int J Biol Macromol 91:1010–1017
Article
CAS
PubMed
Google Scholar
Jabeen B, Naqvi SM, Mahmood T, Sultana T, Arif M, Khan F (2017) Ectopic expression of plant RNA chaperone offering multiple stress tolerance in E. coli. Mol Biotechnol 59:66–72
Article
CAS
PubMed
Google Scholar
Jha B, Lal S, Tiwari V, Yadav SK, Agarwal PK (2012) The SbASR-1 gene cloned from an extreme halophyte Salicornia brachiata enhances salt tolerance in transgenic tobacco. Mar Biotechnol (NY) 14:782–792
Article
CAS
Google Scholar
Jing H, Li C, Ma F, Ma JH, Khan A, Wang X, Zhao LY, Gong ZH, Chen RG (2016) Genome-wide identification, expression diversication of dehydrin gene family and characterization of CaDHN3 in pepper (Capsicum annuum L.). PLoS ONE 11:e0161073
Article
PubMed
PubMed Central
Google Scholar
Kim IS, Kim HY, Kim YS, Choi HG, Kang SH, Yoon HS (2013) Expression of dehydrin gene from Arctic Cerastium arcticum increases abiotic stress tolerance and enhances the fermentation capacity of a genetically engineered Saccharomyces cerevisiae laboratory strain. Appl Microbiol Biotechnol 97:8997–9009
Article
CAS
PubMed
Google Scholar
Kovacs D, Kalmar E, Torok Z, Tompa P (2008) Chaperone activity of ERD10 and ERD14, two disordered stress-related plant proteins. Plant Physiol 147:381–390
Article
CAS
PubMed
PubMed Central
Google Scholar
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948
Article
CAS
PubMed
Google Scholar
Ling H, Zeng X, Guo S (2016) Functional insights into the late embryogenesis abundant (LEA) protein family from Dendrobium officinale (Orchidaceae) using an Escherichia coli system. Sci Rep 6:39693
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu J, Xu X, Xu Q, Wang S, Xu J (2014) Transgenic tobacco plants expressing PicW gene from Picea wilsonii exhibit enhanced freezing tolerance. Plant Cell Tissue Organ Cult 118:391–400
Article
CAS
Google Scholar
Liu H, Yu C, Li H, Ouyang B, Wang T, Zhang J, Wang X, Ye Z (2015) Overexpression of ShDHN, a dehydrin gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses in tomato. Plant Sci 231:198–211
Article
CAS
PubMed
Google Scholar
Liu Y, Song Q, Li D, Yang X, Li D (2017) Multifunctional roles of plant dehydrins in response to environmental stresses. Front Plant Sci 8:1018
Article
PubMed
PubMed Central
Google Scholar
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408
Article
CAS
PubMed
Google Scholar
Lv A, Fan N, Xie J, Yuan S, An Y, Zhou P (2017) Expression of CdDHN4, a Novel YSK2-type dehydrin gene from Bermudagrass, responses to drought stress through the ABA-dependent signal pathway. Front Plant Sci 8:748
Article
PubMed
PubMed Central
Google Scholar
Ochoa-Alfaro AE, Rodriguez-Kessler M, Perez-Morales MB, Delgado-Sanchez P, Cuevas-Velazquez CL, Gomez-Anduro G, Jimenez-Bremont JF (2012) Functional characterization of an acidic SK3 dehydrin isolated from an Opuntia streptacantha cDNA library. Planta 235:565–578
Article
CAS
PubMed
Google Scholar
Peng Y, Reyes JL, Wei H, Yang Y, Karlson D, Covarrubias AA, Krebs SL, Fessehaie A, Arora R (2008) RcDhn5, a cold acclimation-responsive dehydrin from Rhododendron catawbiense rescues enzyme activity from dehydration effects in vitro and enhances freezing tolerance in RcDhn5-overexpressing Arabidopsis plants. Physiol Plant 134:583–597
Article
CAS
PubMed
Google Scholar
Rahman LN, Chen L, Nazim S, Bamm VV, Yaish MW, Moffatt BA, Dutcher JR, Harauz G (2010) Interactions of intrinsically disordered Thellungiella salsuginea dehydrins TsDHN-1 and TsDHN-2 with membranes—synergistic effects of lipid composition and temperature on secondary structure. Biochem Cell Biol 88:791–807
Article
CAS
PubMed
Google Scholar
Shi J, Liu M, Chen Y, Wang J, Lu C (2016) Heterologous expression of the dehydrin-like protein gene AmCIP from Ammopiptanthus mongolicus enhances viability of Escherichia coli and tobacco under cold stress. Plant Growth Regul 79:71–80
Article
CAS
Google Scholar
Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599
Article
CAS
PubMed
Google Scholar
Tang X, Wang H, Chu L, Shao H (2016) KvLEA, a new isolated late embryogenesis abundant protein gene from Kosteletzkya virginica responding to multiabiotic stresses. Biomed Res Int 2016:9823697
PubMed
PubMed Central
Google Scholar
Tolleter D, Jaquinod M, Mangavel C, Passirani C, Saulnier P, Manon S, Teyssier E, Payet N, Avelange-Macherel MH, Macherel D (2007) Structure and function of a mitochondrial late embryogenesis abundant protein are revealed by desiccation. Plant Cell 19:1580–1589
Article
CAS
PubMed
PubMed Central
Google Scholar
Uversky VN, Dunker AK (2010) Understanding protein non-folding. Biochim Biophys Acta 1804:1231–1264
Article
CAS
PubMed
PubMed Central
Google Scholar
Verma G, Dhar YV, Srivastava D, Kidwai M, Chauhan PS, Bag SK, Asif MH, Chakrabarty D (2017) Genome-wide analysis of rice dehydrin gene family: its evolutionary conservedness and expression pattern in response to PEG induced dehydration stress. PLoS ONE 12:e0176399
Article
PubMed
PubMed Central
Google Scholar
Wahid A, Close TJ (2007) Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves. Biol Plant 51:104–109
Article
CAS
Google Scholar
Wan H, Zhao Z, Qian C, Sui Y, Malik AA, Chen J (2010) Selection of appropriate reference genes for gene expression studies by quantitative real-time polymerase chain reaction in cucumber. Anal Biochem 399:257–261
Article
CAS
PubMed
Google Scholar
Wang X, Zhang L, Zhang Y, Bai Z, Liu H, Zhang D (2017) Triticum aestivum WRAB18 functions in plastids and confers abiotic stress tolerance when overexpressed in Escherichia coli and Nicotiania benthamiana. PLoS ONE 12:e0171340
Article
PubMed
PubMed Central
Google Scholar
Xing X, Liu Y, Kong X, Liu Y, Li D (2011) Overexpression of a maize dehydrin gene, ZmDHN2b, in tobacco enhances tolerance to low temperature. Plant Growth Regul 65:109–118
Article
CAS
Google Scholar
Yang Y, He M, Zhu Z, Li S, Xu Y, Zhang C, Singer SD, Wang Y (2012) Identification of the dehydrin gene family from grapevine species and analysis of their responsiveness to various forms of abiotic and biotic stress. BMC Plant Biol 12:140
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang W, Zhang L, Lv H, Li H, Zhang Y, Xu Y, Yu J (2015) The K-segments of wheat dehydrin WZY2 are essential for its protective functions under temperature stress. Front Plant Sci 6:406
PubMed
PubMed Central
Google Scholar
Yin Z, Rorat T, Szabala BM, Ziołkowska A, Malepszy S (2006) Expression of a Solanum sogarandinum SK3-type dehydrin enhances cold tolerance in transgenic cucumber seedlings. Plant Sci 170:1164–1172
Article
CAS
Google Scholar
Zhou Y, Hu L, Jiang L, Liu H, Liu S (2017) Molecular cloning and characterization of an ASR gene from Cucumis sativus. Plant Cell Tissue Organ Cult 130:553–565
Article
CAS
Google Scholar