Open Access

Pretreatment methods of lignocellulosic biomass for anaerobic digestion

  • Farrukh Raza Amin1, 2, 4,
  • Habiba Khalid1,
  • Han Zhang1, 2,
  • Sajid u Rahman1,
  • Ruihong Zhang3,
  • Guangqing Liu1 and
  • Chang Chen1Email author
AMB Express20177:72

https://doi.org/10.1186/s13568-017-0375-4

Received: 30 January 2017

Accepted: 21 March 2017

Published: 28 March 2017

Abstract

Agricultural residues, such as lignocellulosic materials (LM), are the most attractive renewable bioenergy sources and are abundantly found in nature. Anaerobic digestion has been extensively studied for the effective utilization of LM for biogas production. Experimental investigation of physiochemical changes that occur during pretreatment is needed for developing mechanistic and effective models that can be employed for the rational design of pretreatment processes. Various-cutting edge pretreatment technologies (physical, chemical and biological) are being tested on the pilot scale. These different pretreatment methods are widely described in this paper, among them, microaerobic pretreatment (MP) has gained attention as a potential pretreatment method for the degradation of LM, which just requires a limited amount of oxygen (or air) supplied directly during the pretreatment step. MP involves microbial communities under mild conditions (temperature and pressure), uses fewer enzymes and less energy for methane production, and is probably the most promising and environmentally friendly technique in the long run. Moreover, it is technically and economically feasible to use microorganisms instead of expensive chemicals, biological enzymes or mechanical equipment. The information provided in this paper, will endow readers with the background knowledge necessary for finding a promising solution to methane production.

Keywords

LignocellulosePretreatmentMicroaerobicMicrobial communityBiodegradationBiogas

Introduction

Biomass resources are readily accessible around the world as residual wastes and agricultural biomass. The most important and abundant renewable biomass resources include crop residues, such as corn straw, wheat straw and rice straw. China has abundant biomass resources, as it is one of the largest agriculture-based economies in the world. China produces approximately 216 million metric tons of corn straw per annum, and more than half of that remains unutilized (Zhong et al. 2011). Corn straw contains non-edible plant material so called lignocellulose and is mainly composed of cellulose, hemicellulose, and lignin (Jørgensen et al. 2007). Hemicellulose is present as the matrix that surrounds the cellulose skeleton, while lignin is present as an encrusting material and serves as a protective layer. All three components have covalent cross-linkages between the polysaccharides and lignin, therefore, making biomass a composite material (Binder and Raines 2010). Anaerobic digestion (AD) is a promising method for the treatment of organic solid waste and wastewater, as it combines energy recovery with waste treatment. Lately, AD has been extensively used for treating highly biodegradable wastes, such as lignocellulosic materials, animal manure, kitchen waste and municipal sewage sludge (Qiao et al. 2013).

Pretreatment is an important tool for cellulose conversion processes, and is essential to change the structure of cellulosic biomass to make cellulose more available to the enzymes that convert the carbohydrate polymers into fermentable sugars (Mosier et al. 2005). The pretreatment step is referred to as the technological bottleneck for AD bioprocesses from LM that are cost effective. At least 20% of the total production cost is represented by the pretreatment phase in all these different approaches, thereby, making it the most expensive process step (Yang and Wyman 2008).

During the pretreatment process the compact structure of lignocellulosic is disrupted and cellulose fiber is exposed. Pretreatment of the lignocellulosic material is carried out to overcome recalcitrance through the combination of chemical and structural changes to the lignin and carbohydrates (Singh et al. 2015b). Previous studies have reported different methods of pretreatment, such as biological, chemical, mechanical and thermal process, as well as their combinations, to speed substrate hydrolysis (Wagner et al. 2013). However, according to a study, these traditional methods of pretreatment are cost intensive, as additional chemicals or energy are required (Lim and Wang 2013). Much research is needed to explore methods for lowering the cost of the conversion process. The basic understanding of each step in the process with regard to subsequent commercial viability and operation is required for commercial success in transforming biomass into energy.

Previous research has reported that hydrolysis can be enhanced by introducing a limited supply of oxygen during pretreatment or directly into the anaerobic digester (Ramos and Fdz-Polanco 2013). Microaerobic pretreatment is more economical and environmentally friendly compared to the other pretreatment methods, as it only requires a limited supply of oxygen. Previous studies have shown that microaerobic treatment has the potential to reduce the formation of toxic metabolites, such as ethanol and lactic acid, as well as facilitate the formation of certain lipids, which contribute to the stability of the anaerobe cell membrane (Lim and Wang 2013).

This paper reviews the pretreatment processes used in the production of biogas from lignocellulosic materials. The objective is to identify the strengths and weaknesses of various technologies and to find a pretreatment method suitable for industrial-scale adoption. We have identified the areas that need improvement in each of the mentioned technologies. In addition, some useful information for policy makers and researchers is given.

Pretreatment methods

Physical pretreatment

Physical pretreatment methods, including mechanical operations, different types of irradiation and ultrasonic pretreatment, have been utilized to enhance the accessibility to hydrolysable polymers within lignocellulosic material. Among the physical pretreatments, mechanical pretreatment is widely used for waste materials, such as agricultural residues or any other crops and forestry residues.

Mechanical

Mechanical pretreatments of lignocellulosic material is an important step for improving the bioconversion affectivity, particle densification and distribution, enzymatic accessibility, and the overall transformation of lignocellulosic material into biofuels without the generation of toxic side streams (Barakat et al. 2014). This pretreatment also generates new surface area, improves flow properties, and increases the bulk density and porosity. Lignocellulosic material has an intricate composition, as shown in Fig. 1. In mechanical comminution, different mills are used to break down the lignocellulosic material and reduce the material’s crystallinity. Commonly used mills include attrition mills, ball mills, centrifugal mills, colloid mills, hammer mills, extruders, knife mills, pin mills and vibratory mills (Cheng and Timilsina 2011).
Fig. 1

Lignocellulose composition: cellulose, hemicellulose, and lignin

Milling reduces the crystallinity of cellulose, the substrate particle size and the degree of polymerization. The following correlation between the digestibility and structural features for wheat straw during the process of hydrolysis has been reported as shown in Eq. 1 (O’Dwyer et al. 2008).
$$ {\text{Digestibility}} = 2.04\left( {\text{Specific surface area}} \right)^{0.99} \times\left ({100 - {\text{Crystallinity index}}} \right) \,\times\left( {\text{Lignin content}} \right)^{{- 0.39}} $$
(1)

The process of size reduction is energy intensive. For the proper optimization and design of biomass size-reduction equipment, the mechanical properties should be well known. The feed rate of the material, initial particle size, machine variables and moisture content greatly influence the energy requirements for reducing the size of lignocellulosic material. Fine grinding requires a large amount of energy, and there is a need to maintain a balance between efficiency improvement and cost. Thus, research efforts should be made to determine the optimal size requirements of the particle size of milled biomass.

As there is no production of inhibitors, such as furfural and hydroxyl methyl furfural (HMF), milling is best suited for both ethanol and methane production. However, this technique has a high-energy requirement and is not economically viable as a pretreatment method. Considering the high-energy requirement of milling and the sky rocketing energy prices, it is likely that milling is still not an economically viable option.

Physicochemical pretreatment

Steam explosion

Steam explosion (SE) is a well-known technique for the pretreatment of various biomass feedstocks. During SE pretreatment, lignocellulosic material is exposed to a high-pressure saturated steam at a temperature of 160–260 °C and a corresponding pressure of 5–50 atm for a few minutes. The pressure is gradually released, and the steam expands within the lignocellulosic matrix, causing individual fibers to separate and the cell wall structure to be disrupted (Kumar et al. 2009; Agbor et al. 2011). Acid can be added as a catalyst during steam explosion; however, the addition of acid is not mandatory. Steam pretreatment is termed as auto-hydrolysis if no exogenous acid catalyst is added to the plant biomass. However, more extensive lignin depolymerization can be achieved with 1% acid treatment.

Variables affecting the efficiency of SE include the moisture content, particle size, residence time and temperature (Talebnia et al. 2010). The particle size and composition of the starting material determine the relationship between the temperature and time (Viola et al. 2008). The cost of the overall process can be greatly reduced by using large particles. Decreasing the particle size of the material requires intensive mechanical comminution increases the production cost without significant increase in the sugar yield.

Hydrolysis and hemicellulose solubilization can be accomplished by either low temperature and long residence time (190 °C, 10 min) or high temperature and short residence time (270 °C, 1 min) (Duff and Murrayh 1996). The final selection of these two parameters, the residence time and temperature, is influenced by the pretreatment strategy as well as the physical accessibility and type of raw material.

Acetic acid is released as wood components are exposed to high-temperature steam, which further catalyze hydrolytic reactions of the constituent polymers. The loss of amorphous cellulose and hemicelluloses occurs as a consequence of these reactions (Martin-sampedro et al. 2011). The formation of formic and levulinic acids occur and can play a significant role in the pretreatment efficiency (Ramos 2003).

A commonly used parameter in steam pretreatment is the ‘severity factor’ (log R0), which is a measure of the severity of the pretreatment. This term combines the pretreatment temperature and the pretreatment duration in the following Eq. 2:
$$ {\text{log R}}_{0} {\text{ = log}}\left( {{\text{t}}*{\text{e}}^{{\left( {\frac{{({\text{T}} - 100)}}{14.75}} \right)}} } \right) $$
(2)
where log R o is the severity factor (3.14–3.56 for SE) as a function of treatment time; T is the temperature in  °C, where 100 °C is the reference temperature at which no solubilization occurs; t is the residence time in (min); and 14.75 is the activation energy in the current conditions, where the process obeys first-order kinetics and the Arrhenius law (Overend and Chornet 1987).

Steam explosion is effective for the pretreatment of agricultural residues and hardwoods but less effective for softwoods, where using an acid catalyst becomes significant. The cons of SE include the incomplete destruction of the lignin-carbohydrate matrix leading to the precipitation and condensation of soluble lignin components. This destroys a fragment of the xylan in hemicellulose and generates fermentation inhibitors at higher temperatures, thus making the biomass less digestible.

Microwave radiation (MWR)

The electric and magnetic field components of microwaves apply forces that rapidly change in orientation at a rate of 2.4 × 109 times per second (Galema 1997). MWR accelerates biological, chemical and physical processes due to heat and extensive collisions brought about by the vibration of polar molecules and ion movement (Sridar 1998). The performance of MWR is influenced by the dielectric properties of the lignocellulosic material. The ability of a material to store electromagnetic energy is measured by its dielectric constant, whereas the ability of a material to convert electromagnetic energy into heat is measured by its dielectric loss factor. The loss tangent (ratio of the dielectric loss factor to the dielectric constant) is calculated to measure the net efficiency of MWR.

The use of MWR-assisted biomass pretreatments has been studied, including (1) MWR/water, (2) MWR/alkali, (3) MWR/acid, (4) MWR/ionic liquid, (5) MWR/salt, and other combined MWR-assisted pretreatments (Xu 2015). MWR-assisted alkali pretreatment removes more hemicellulose and lignin from wheat straw in a shorter time, compared with traditional alkali pretreatment (Zhu et al. 2006b). Comparison of pretreatment with MWR/water, MWR/alkali and MWR/dilute acid showed that the maximum yield of total sugars after enzymatic pretreatment was attained from wheat straw pretreated by MWR/dilute acid (0.5% H2SO4, w/v) at 160 °C for 10 min, which was higher than that from MWR/alkali (0.1 g/g straw) at 160 °C for 10 min (604 mg total sugars/g straw) and MWR/water at 200 °C for 10 min (544 mg/g straw) (Saha et al. 2008). Microwave heating also accelerates cellulose dissolution in ionic liquids (Zhu et al. 2006a). The hydrolysis and MWR pretreatment of grass-type biomass into sugars was accomplished in one step by eliminating the hydrolysis step, making the process economically attractive (Marx et al. 2014). Currently, MWR is carried out on the lab scale, as the equipment is very small, and it is still difficult to apply in potential industrial projects; thus, it is not one of the most promising pretreatment methods.

Chemical pretreatment

Chemical pretreatment methods are used more often than biological or physical pretreatment methods because they are more effective and enhance the biodegradation of complex materials (Zhou et al. 2012). Common chemicals used in chemical pretreatment methods for improving the AD performance of agricultural residues are sulfuric acid (H2SO4), hydrochloric acid (HCl), acetic acid (CH3COOH), sodium hydroxide (NaOH), potassium hydroxide (KOH), lime (Ca(OH)2), aqueous ammonia (NH3∙H2O), and hydrogen peroxide (H2O2) (González et al. 2005; Us and Perendeci 2012).

Alkali pretreatment

Alkali pretreatment involves the addition of bases to biomass, leading to an increase of internal surface by swelling, a decrease of polymerization degree and crystallinity, destruction of links between lignin and other polymers, and lignin breakdown (Badiei et al. 2014). Alkali pretreatment works better for low lignin content biomass and increasing the lignin content of biomass makes this method less effective (Sun and Cheng 2002). So the effectiveness of this pretreatment depends on the lignin content of the biomass (Mudhoo 2012). NaOH, KOH and Ca(OH)2 are most reported chemicals used in alkaline pretreatment, in which process conditions are relatively mild but reaction times can be long (Harmsen et al. 2010). These pretreatments are beneficial in one way or other in accomplishing the partial hydrolysis of lignocellulosic biomasses. Up to now, NaOH and KOH are the most effective alkali-treatments for improving the biomass digestibility. According to the study, the methane yield of NaOH-pretreated corn straw was found to be approximately 220 mL/gVS, which was 73.4% higher than that of untreated corn straw as shown in Table 1. So, NaOH pretreatment has proven to be effective to improve the digestibility and increase the methane yield. However, due to concerns over sodium discharge in the process effluent that is difficult to be recycled, may limit its application on a commercial scale (Zheng et al. 2009). Though KOH could be a solution to this problem. Considering that KOH is a strong base, KOH-pretreated anaerobic digestate is gaining more importance as a fertilizer in the agriculture sector (Jaffar et al. 2016). It has been also reported that 2.5% KOH-treated CS generates maximum methane yield of 295 mL/gVS, and significantly improved 95.6% with regard to untreated CS (Li et al. 2015b). However, the high chemical loading, the toxicity to microbes, the high cost when applied in large scale, and the environmental pollution caused by the KOH is also reported (Li et al. 2015a).
Table 1

Different pretreatment methods and their methane yields

Pretreatment method

Pretreatment type

Pretreatment conditions

Composition changed

Gas generating capacity mL/gVS

Increased methane yield (%)

Observations

Reference

Physical methods

Mechanical pulverization

Pulverization, particle sizes of 33 to 6 mm

Cellulose, hemicellulose

11–13

Energy cost is high; particle diameter should be 6 mm for high methane yield

(Herrmann et al. 2012)

Physicochemical methods

Steam explosion

Pretreating silage straw 2.5 MPa, 90 s

Hemicellulose, lignin

334.8

56

Gas generating speed increased

(Guizhuan et al. 2012)

Microwave radiation

Frequency 2.45 GHz, power 680 W, time 24 min

Lignin

332.3

Gas generating speed is fast

(Weiwei et al. 2012)

Chemical methods

H2SO4

2%, pretreated 7 days

Cellulose, hemicellulose

175.6 CH4

74.6

Toxic, corrosive and expensive handling

(Song et al. 2014)

HCl

2%, pretreated 7 days

Cellulose, hemicellulose

163.4 CH4

62.4

Toxic, corrosive and expensive handling

(Song et al. 2014)

CH3COOH

4%, pretreated 7 days

Cellulose, hemicellulose

145.1 CH4

44.2

Toxic, corrosive and expensive handling

(Song et al. 2014)

NaOH

2%, pretreated 3 days

Hemicellulose, lignin

220.0 CH4

73.4

Toxic and hard to recycle

(Zheng et al. 2009)

KOH

2.5%, pretreated 1 day

Hemicellulose, lignin

295.0 CH4

95.6

Effective but expensive

(Li et al. 2015b)

Ca(OH)2

2.5%, pretreated 1 day

Hemicellulose, lignin

210.71 CH4

39.7

Cheap but hard to dissolve

(Li et al. 2015b)

KOH + Ca(OH)2

0.5 and 2%, pretreated 1 day

Hemicellulose, lignin

271.38 CH4

79.9

Cheap and effective

(Li et al. 2015b)

H2O2

3%, pretreated 7 days

Hemicellulose, lignin

216.7 CH4

115.4

Cheap but longer pretreatment time

(Song et al. 2014)

Biological methods

Mixed microorganism

XDC-2, pretreated for 16 days

Hemicellulose

294.9 CH4

87. 9

Long pretreatment time and low efficiency

(Yuan et al. 2011)

Adding manure

Cow dung: corn straw (1:1, w/w) pretreated for 20 days

Hemicellulose

450.0

40. 7

Highly dependent on manure type

(Zhou et al. 2012)

Microaerobic pretreatment

Pretreated up to complete O2 consumption by microbes

Hemicellulose, lignin

325.7 CH4

16.24

Efficient pretreatment and cost effective

(Fu et al. 2015d)

While, Ca(OH)2 might be better as it is low cost, safer, more environmental friendly, and can be easily recovered (Singh et al. 2015a). Ca(OH)2 has been also reported previously to enhance methane yield from lignocellulosic materials (Xiao et al. 2013). It was found that cumulative methane production of 2.5% Ca(OH)2-treated CS was found to be 210.71 mL/gVS which was 39.7% higher than that of untreated CS (Li et al. 2015b). Nevertheless, as a weak alkali, Ca(OH)2 may not improve biomass digestion significantly alone.

Some reports also focused on the combinations of two or more pretreatments to increase the biodegradability and biomethane yield during anaerobic digestion processes. Such as 0.5% KOH and 2.0% Ca(OH)2 was comparable to the effect of 2.5% KOH, obtaining a total methane yield of 271.38 mL/gVS, which was 79.9% higher than that of untreated CS as shown in Table 1 (Li et al. 2015b). However, the after effects of lime in the form of precipitate, sodium salts in the form of inhibitors, and KOH as black liquor removal and relatively high price, may limit its application (Hendriks and Zeeman 2009; Li et al. 2015b). Hence, some researchers are focusing on black liquor recycling to reduce the cost as well as the pollution (Siddhu et al. 2016).

Acid pretreatment

In addition, CH3COOH, HCl and H2SO4 pretreatments have been employed for improving the AD of lignocellulosic materials (Pakarinen et al. 2011; Monlau et al. 2013). Pretreatment with acid hydrolysis (HCl, H2SO4), can result in improvement of enzymatic hydrolysis of lignocellulosic biomass, to release fermentable sugars. Acid pretreatment results in the disruption of the van der Waals forces, hydrogen bonds and covalent bonds that hold together the biomass components, which consequently causes the solubilization of hemicellulose and the reduction of cellulose (Li et al. 2010). The main reaction that occurs during acid pretreatment is the hydrolysis of hemicellulose, especially xylan, as glucomannan is more stable. Under such conditions, furfural and HMF generation can occur, because of dehydration of xylose galactose, mannose and glucose (Hendriks and Zeeman 2009). Dilute acid hydrolysis pretreatment on the other hand can achieve high reaction rates and significantly improve cellulose hydrolysis. Lignin is hardly dissolved in most cases, but is disrupted to a high degree, thus leading to increased susceptibility of the cellulose to the enzymes (Mudhoo 2012). These pretreatments are more successful with usual concentration less than 4 wt%. Acid reagents, such as H2SO4, HCl, and CH3COOH, at concentrations of 1, 2, and 4% (w/w) have been used for pretreatment. The biodegradation of lignocellulosic straw was effectively accomplished in all pretreatments. The straw pretreated with H2SO4 (2%) and HCl (2%) acquired the highest methane yield of 175.6 and 163.4 mL/gVS among the acid pretreatments, which were 74.6 and 62.4% respectively higher than that of untreated straw, as show in Table 1 (Song et al. 2014).

For acid pretreatments, the knowledge of reaction kinetics is very important to select the suitable reactor design, configurations and operating conditions. It has been stated that hemicellulose converts to xylose by a first-order reaction with kinetic rate parameters K1 and K2 and then to furfuraldehyde and acetic acid, when biomass is exposed to a temperature higher than 180 °C (Eq. 3) (Lee et al. 1999). For the complete conversion of biomass with the high sugar and low furfural yields, hydrolysis occurs at two different stages. In the first stage, slow hydrolyzing hemicellulose at low temperature (90 °C), long retention time (50–185 min) pretreatment process with more concentrated acid (4.9–9.8%), released hemicellulosic sugars, which were then separated from biomass. While in the second stage at fast hydrolyzing hemicellulose, the remaining biomass was retreated at much higher temperature (120–130 °C) and low retention time (7–10 min) to hydrolyze cellulose to glucose. Since then, most hemicellulose hydrolysis models have been based on this reaction (Eq. 4) (Tanjore et al. 2011). However, a third variation of the basic model is the presence of an oligomeric intermediate (Eq. 5). Moreover, upon the introduction of xylo-oligomers to the kinetic analysis, the conversion of hemicellulose to soluble xylo-oligomers first occurs, which eventually converts to monomeric xylose (Jacobsen and Wyman 2000).
(3)
(4)
(5)
Both the inhibitor formation and the hydrolysis of lignocellulose are a function of pretreatment severity, called the combined severity factor (CSF), which is influenced by the acid concentration, reaction temperature, and retention time. Chum (Chum et al. 1990) proposed an equation to calculate the CSF based on the P-factor proposed by (Overend and Chornet 1987). These relationships are indicated in Eq. 6.
$$ {\text{Combined Severity}}\, {\text{Factor }}\left( {\text{CSF}} \right) = \log {\text{R}}_{0} - {\text{ pH, where R}}_{0} {\text{ = t}}^{{{\text{exp }}\left[ {\frac{{ {\text{T}}_{\text{R}} - {\text{T}}_{\text{H}} }}{14.75}} \right]}} $$
(6)
where the pH is the pH of the final slurry, t is the reaction time, TR is the reaction temperature, and TH is the reference temperature (100 °C).

The susceptibility of acid-pretreated biomass to cellulase treatment increases with an increase in the pretreatment severity and leads to high, nearly theoretical glucose yields. For corn straw biomass, it has been observed that with an increase in the CSF of acid pretreatment from 0.5 to 2.2, a substantially increased glucose release after enzymatic saccharification, from 32 to 57% (mass glucan/mass untreated biomass) could be achieved (Lloyd and Wyman 2005).

A feedstock pretreated with dilute acid may be slightly difficult to ferment, as fermentation inhibitors will be present. The cost of dilute acid pretreatment is higher than the other physicochemical pretreatment methods, such as AP and ammonia fiber/freeze explosion (AFEX), particularly the two-stage dilute acid pretreatment. Dilute and concentrated acids are hazardous, corrosive and toxic, and require expensive construction materials. Furthermore, acid recovery after hydrolysis leads to the secondary treatment process (Mosier et al. 2005; Kumar et al. 2009). If H2SO4 or HNO3 are used as chemical agents, formation of H2S and N2 due to reduction of sulphate and nitrate respectively, may cause a decrease in methane production (Hendriks and Zeeman 2009).

Biological pretreatment

The deconstruction of lignin structures in the cell wall using microbes and/or enzymes as catalysts is usually referred to as biological pretreatment and occurs in the first stage of hydrolysis with other pretreatment processes (Tanjore and Richard 2015). The use of cellulase enzymes for converting cellulose into oligomers and sugar monomers is termed as enzymatic saccharification and occurs in the second stage of hydrolysis. Keeping these biological processes separate is conceptually convenient, but it must be considered that many of the relevant microbes simultaneously hydrolyze cellulose and lignin to obtain carbon and energy from biomass, as shown in Fig. 2. Effective biological pretreatment requires various chemical mediators and enzymes to address biochemical and physical barriers to hydrolysis; mixtures of enzymes can work synergistically for expanding small pores and increasing access by opening the cell wall matrix (Jeremic et al. 2014).
Fig. 2

Schematic diagram of the pretreatment of lignocellulosic material for biogas production

Microbiological treatment

Bacteria such as Actinomycetes, have been observed to be effective on grasses, while fungi have gained popularity as sources of commercial plant cell wall-degrading enzymes (white-rot fungi), generating multiple cellulose-, hemicellulose- and lignin-degrading hydrolyzing enzymes. White-rot fungi have the capability to selectively metabolize low molecular weight lignin and hemicellulose while leaving cellulose relatively unaffected. Phanerochaete chrysosporium is the most well studied fungus for producing lignin-degrading enzymes. These aerobic bacteria are grown on biomass by utilizing solid-state fermentation technologies familiar to simple bench-scale laboratory systems and the mushroom industry (Saritha 2012).

The rate of biological pretreatment is very slow for industrial purposes. Some of the disadvantages of biological pretreatment that make it less suitable for industry include a long residence time of 10–14 days, extremely precise growth conditions, and the need for a large space to perform the biological pretreatment. Another potential disadvantage is that some fraction of the carbohydrate is consumed by the microorganisms. Biological pretreatment can be exploited as a first step, default pretreatment in combination with another pretreatment method or on its own if the biomass has a low lignin content (Agbor et al. 2011).

However, the most cost-effective and favorable treatments among these still need to be identified. Furthermore, the optimal concentrations for pretreatment not often reported. For the efficient and feasible utilization of agricultural residues, such information is essential.

Microaerobic pretreatment

Microaerobic pretreatment (MP) is considered to be an alternative pretreatment for the AD of corn straw in various studies. Oxygen conventionally inhibits AD. Recent studies have shown that introducing a limited supply of oxygen (or air) directly into the AD or during the pretreatment step can improve the methane yield of corn straw. The relative abundance of phylum Firmicutes, class Clostridia and order Clostridiales, which are associated with hydrolysis of AD, were grown under microaerobic conditions. Furthermore, the relative abundances of Methanobacterium and Oxytolerant were both doubled under microaerobic conditions. The reason for the improved AD performance may be the microbial community shifting under microaerobic conditions (Fu et al. 2016).

The amount of oxygen supplied during pretreatment is very important, as excessive oxygen inhibits the activity of methane-forming microorganisms and decreases the production of methane (Xu et al. 2014). In contrast, excessive oxygen can oxidize readily available substrates or facilitate aerobic Methanotrophs to consume methane. It has been also reported that thermophilic microaerobic pretreatment (TMP) before the AD of corn straw resulted in an increase in the relative abundance of phylum Firmicutes, which are associated with the production of extracellular enzymes. The relative abundance of phylum Firmicutes (especially class Bacilli, order Bacillales) was higher under microaerobic conditions than anaerobic conditions, which enables and increase in extracellular enzymes, reducing sugar, volatile fatty acids (VFAs) and soluble chemical oxygen demand (SCOD) under microaerobic condition. Therefore, the AD of corn straw was more efficient, and more methane was produced (Fu et al. 2015b).

The influence of AP and TMP on the AD of sugarcane bagasse was studied. It was seen that both AP and TMP were efficient pretreatment methods for the AD of sugarcane bagasse. The oxygen loading during TMP is of vital importance in the maximum cumulative methane production of sugarcane bagasse and can result in better crystallinity disruption, VS removal, and methane production with less lag-phase time, whereas, AP efficiently removes lignin in addition to improving the methane production rate and technical digestion time. AP requires a large amount of chemical reagent during pretreatment, whereas TMP is a cost-effective and eco-friendlier pretreatment method for the AD of sugarcane bagasse as shown in Table 2 (Fu et al. 2015a).
Table 2

Microaerobic pretreatment of lignocellulosic biomass

Conditions for feedstock

Conditions for inoculum

Pretreatment process

O2 Conc. (mL/gVS)

Digestion process/Temp (°C)

Gas yield (mL/gVS)

Improved yield (%)

Reference

Type

TS (%)

VS (%)

Type

TS (%)

VS (%)

Corn straw

92.4

93.4

Biogas slurry

6.64

70.62

TMP

5

Batch/37

325.7 CH4

16.24

(Fu et al. 2015d)

Corn straw

91.9

89.5

Active sludge

2.6

52.7

TMP

0.45/day

Batch/55

216.8 CH4

16.5

(Fu et al. 2016)

Corn straw

92.4

93.4

Biogas slurry

6.1

73.05

Secondary TMT

10

Batch/37

380.6 CH4

28.4

(Fu et al. 2015c)

Corn straw

91.25

91.8

Biogas slurry

1.25

0.75

Micro-aerobic

0.28/day

Batch/35

41.6 H2

43

(Li et al. 2016)

Sugarcane bagasse

29.6

96.2

Anaerobic sludge

4.6

70.6

TMP

10

Batch/37

229.6 CH4

29.28

(Fu et al. 2015a)

In addition to pretreatment before anaerobic digestion some researchers have suggested substrate pretreatment during the anaerobic digestion process. Secondary thermophilic microaerobic treatment (STMT) during anaerobic digestion helps in reset the digestion process by buffering the pH and increasing the microorganism activity, which provides a secondary increase in biomass degradation. This may be a successful solution to improve the low fermentation efficiency during the later stages of the anaerobic digestion process. The effect of STMT on the anaerobic digestion of corn straw improved the VS removal efficiency and afforded a higher methane yield. Similar to microaerobic pretreatment before the anaerobic digestion process, the oxygen supply in STMT during anaerobic digestion process not only reduces the concentration of toxic metabolites (e.g., ethanol, acetic acid and lactic acid) but also promotes the synthesis of certain lipids required for the stability of the anaerobe cell membrane (Fu et al. 2015c) as shown in Table 2.

Thus, TMP can be considered to be an efficient pretreatment process for AD when methane yield enhancement is a primary concern. This option has strong ability to accelerate hydrolysis, reduce the lag-phase time, and increase the methane production up to 16.24% higher than that of untreated corn digestion. The decrease in the crystallinity index, resulting from structural changes during the TMP process, may be the cause of the improvement in the methane yield of pretreated biomass as shown in Table 2 (Fu et al. 2015d).

Based upon the literature studies, it is concluded that each pretreatment method has its own merits and demerits. Although, based on feedstock types and availability of technology, the appropriate method can be selected. Among the various cutting-edge technologies, MP may be an efficient and cost effective pretreatment method that seems like a promising method and it may meet the requirements for industrial scale adoption. However, what happened during MP process is still less reported and study on whole mechanism of MP process is also lacking. Further research for technological advancement is highly recommended.

Conclusion

Pretreatment alters the various feedstock characteristics at the fiber, fibril and micro fibril level. The extent and rate of LM hydrolysis are affected by biological pretreatment, chemical pretreatment, physical pretreatment, and its morphological characteristics. However, the most cost-effective and favorable treatments among these methods have not yet been identified. Moreover, the optimal conditions for pretreatment are rarely reported. Such information is essential for the efficient and feasible utilization of different agricultural residues. One of the potential pretreatment methods reported in different studies is microaerobic pretreatment, which is more economical and environmentally friendly. MP only requires a limited amount of oxygen (or air) supplied either during a pretreatment step or directly into the anaerobic digester. The mechanism behind microaerobic pretreatment is hydrolysis initiated by the increased facultative bacteria growth rate and enzymatic activity and the greater cellulase production under microaerobic conditions. MP is an efficient and cost-effective pretreatment method that meets most of the requirements for industrial applications, such as the formation of reactive cellulosic fiber for enzymatic attack, the avoidance of the formation of possible inhibitors to the fermenting microorganisms and hydrolytic enzymes, reduced energy demand and reduced cost of size reduction of the feedstock. Other benefits include the reduction in the cost of material for construction of the pretreatment reactor and the generation of fewer residues due to zero consumption of chemicals, all of which may make MP one of the most promising and environmentally friendly techniques in the long run. At present, researchers and policy makers are in dire need of useful information that may lead to the necessary improvements in the AD industry.

Abbreviations

AD: 

anaerobic digestion

AP: 

alkali pretreatment

AFEX: 

ammonia fiber/freeze explosion

CS: 

corn straw

CSF: 

combined severity factor

HMF: 

hydroxyl methyl furfural

LM: 

lignocellulosic materials

MC: 

moisture contents

MP: 

microaerobic pretreatment

MWR: 

microwave radiations

SCOD: 

soluble chemical oxygen demand

SE: 

steam explosion

STMT: 

secondary thermophilic microaerobic treatment

TMP: 

thermophilic microaerobic pretreatment

TS: 

total solid

VFA: 

volatile fatty acid

VS: 

volatile solid

Declarations

Authors’ contributions

FRA collected the tabular data, created figures, and drafted the manuscript with the guidance of corresponding author (CC). Co-authors helped to draft the manuscript. All authors read and approved the final manuscript.

Acknowledgements

We would like to thank the financial support from Chinese Ministry of Science and Technology. This work was supported by National Key Research and Development Program of China and Teaching Reform Program in Graduate Education at Beijing University of Chemical Technology.

Competing interests

The authors declare that they have no competing interests.

Availability of data and materials

All data are fully available without restriction.

Consent for publication

This manuscript does not contain any individual person’s data.

Ethics approval and consent to participate

No animal or human subjects were used in this work.

Funding

This study was funded by the Teaching Reform Program in Graduate Education at Beijing University of Chemical Technology (G-JG-PT201603) and the National Key Research and Development Program of China.

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors’ Affiliations

(1)
College of Chemical Engineering, Beijing University of Chemical Technology
(2)
College of Life Science and Technology, Beijing University of Chemical Technology
(3)
Department of Biological and Agricultural Engineering, University of California
(4)
Center for Climate Research and Development (CCRD), COMSATS Institute of Information Technology

References

  1. Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29:675–685. doi:10.1016/j.biotechadv.2011.05.005 View ArticlePubMedGoogle Scholar
  2. Badiei M, Asim N, Jahim JM, Sopian K (2014) Comparison of chemical pretreatment methods for cellulosic biomass. Procedia Soc Behav Sci 9:170–174. doi:10.1016/j.apcbee.2014.01.030 Google Scholar
  3. Barakat A, Mayer C, Solhy A, Arancon RAD, De Vries H, Luque R, Barakat A, Mayer C, Solhy A, Arancon RAD, De Vries H (2014) Mechanical pretreatments of lignocellulosic biomass: towards facile and environmentally sound technologies for biofuels production. RSC Adv 4:48109–48127. doi:10.1039/C4RA07568D View ArticleGoogle Scholar
  4. Binder JB, Raines RT (2010) Fermentable sugars by chemical hydrolysis of biomass. PNAS 2010:1–6. doi:10.1073/pnas.0912073107 Google Scholar
  5. Cheng JJ, Timilsina GR (2011) Status and barriers of advanced biofuel technologies: a review. Renew Energy 36:3541–3549. doi:10.1016/j.renene.2011.04.031 View ArticleGoogle Scholar
  6. Chum HL, Johnson DK, Black SK, Overend RP (1990) Pretreatment-catalyst effects and the combined severity parameter. Appl Biochem Biotechnol 24(25):1–14View ArticleGoogle Scholar
  7. Duff SJB, Murrayh WD (1996) Bioconversion of forest products industry waste cellulosic to fuel ethanol: a review. Bioresour Technol 55:1–33View ArticleGoogle Scholar
  8. Fu S, Shi X, Wang F, Yuan X, Guo R-B (2015a) Comparison of thermophilic microaerobic and alkali pretreatment of sugarcane bagasse for anaerobic digestion. RSC Adv 5:63903–63908. doi:10.1039/C5RA10717B View ArticleGoogle Scholar
  9. Fu SF, He S, Shi XS, Katukuri NR, Dai M, Guo R-B (2015b) The chemical properties and microbial community characterization of the thermophilic microaerobic pretreatment process. Bioresour Technol 198:497–502. doi:10.1016/j.biortech.2015.09.029 View ArticlePubMedGoogle Scholar
  10. Fu SF, Shi XS, Xu XH, Wang CS, Wang L, Dai M, Guo R-B (2015c) Secondary thermophilic microaerobic treatment in the anaerobic digestion of corn straw. Bioresour Technol 186:321–324. doi:10.1016/j.biortech.2015.03.053 View ArticlePubMedGoogle Scholar
  11. Fu SF, Wang F, Yuan XZ, Yang ZM, Luo SJ, Wang CS, Guo R-B (2015d) The thermophilic (55 °C) microaerobic pretreatment of corn straw for anaerobic digestion. Bioresour Technol 175:203–208. doi:10.1016/j.biortech.2014.10.072 View ArticlePubMedGoogle Scholar
  12. Fu SF, Wang F, Shi XS, Guo R-B (2016) Impacts of microaeration on the anaerobic digestion of corn straw and the microbial community structure. Chem Eng J 287:523–528. doi:10.1016/j.cej.2015.11.070 View ArticleGoogle Scholar
  13. Galema SA (1997) Microwave chemistry. Chem Soc Rev 26:233–238View ArticleGoogle Scholar
  14. González G, Urrutia H, Roeckel M, Aspe E (2005) Protein hydrolysis under anaerobic, saline conditions in presence of acetic acid. J Chem Technol Biotechnol 157:151–157. doi:10.1002/jctb.1165 View ArticleGoogle Scholar
  15. Guizhuan X, Shuaiyao F, Xinfeng W, Daomeng T, Bailiang Z (2012) Anaerobic fermentation characteristic of green corn straw pretreated by steam explosion. Trans Chin Soc Agric Eng 28:205–210Google Scholar
  16. Harmsen P, Huijgen W, Bermudez L, Bakker R (2010) Literature review of physical and chemical pretreatment processes for lignocellulosic biomass. Report no. 1184, pp 1–49. http://www.wur.nl/en/Publication-details.htm?publicationId=publication-way-333936323031
  17. Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresouce Technol 100:10–18. doi:10.1016/j.biortech.2008.05.027 View ArticleGoogle Scholar
  18. Herrmann C, Heiermann M, Idler C, Prochnow A (2012) Particle size reduction during harvesting of crop feedstock for biogas production I: effects on ensiling process and methane yields. Bioenergy Res 5:926–936. doi:10.1007/s12155-012-9206-2 View ArticleGoogle Scholar
  19. Jacobsen SE, Wyman CE (2000) Cellulose and hemicellulose hydrolysis models for application to current and novel pretreatment processes. Appl Biochem Biotechnol 84–86:81–96View ArticlePubMedGoogle Scholar
  20. Jaffar M, Pang Y, Yuan H, Zou D, Liu Y, Zhu B, Korai RM, Li X (2016) Wheat straw pretreatment with KOH for enhancing biomethane production and fertilizer value in anaerobic digestion . Chin J Chem Eng 24:404–409. doi:10.1016/j.cjche.2015.11.005 View ArticleGoogle Scholar
  21. Jeremic D, Goacher RE, Yan R, Karunakaran C, Master ER (2014) Direct and up-close views of plant cell walls show a leading role for lignin-modifying enzymes on ensuing xylanases. Biotechnol Biofuels. doi:10.1186/s13068-014-0176-9 PubMedPubMed CentralGoogle Scholar
  22. Jørgensen H, Kristensen JB, Felby C (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod Biorefining 1:119–134. doi:10.1002/bbb View ArticleGoogle Scholar
  23. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729. doi:10.1021/ie801542g View ArticleGoogle Scholar
  24. Lee YY, Iyer P, Torget RW (1999) Dilute-acid hydrolysis of lignocellulosic biomass. Adv Biochem Eng Biotechnol 65:94–115Google Scholar
  25. Li C, Knierim B, Manisseri C, Arora R, Scheller HV, Auer M, Vogel KP, Simmons BA, Singh S (2010) Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresour Technol 101:4900–4906. doi:10.1016/j.biortech.2009.10.066 View ArticlePubMedGoogle Scholar
  26. Li J, Zhang R, Abdul M, Siddhu H, He Y, Wang W, Li Y, Chen C, Liu G (2015a) Enhancing methane production of corn stover through a novel way: sequent pretreatment of potassium hydroxide and steam explosion. Bioresour Technol 181:345–350. doi:10.1016/j.biortech.2015.01.050 View ArticlePubMedGoogle Scholar
  27. Li L, Chen C, Zhang R, He Y, Wang W, Liu G (2015b) Pretreatment of corn stover for methane production with the combination of potassium hydroxide and calcium hydroxide. Energy Fuels 29:5841–5846. doi:10.1021/acs.energyfuels.5b01170 View ArticleGoogle Scholar
  28. Li D, Jiao C, He W, Yan Z, Yuan Y (2016) Comparison of micro-aerobic and anaerobic fermentative hydrogen production from corn straw. Int J Hydrogen Energy 41:5456–5464. doi:10.1016/j.ijhydene.2016.01.141 View ArticleGoogle Scholar
  29. Lim JW, Wang JY (2013) Enhanced hydrolysis and methane yield by applying microaeration pretreatment to the anaerobic co-digestion of brown water and food waste. Waste Manag 33:813–819. doi:10.1016/j.wasman.2012.11.013 View ArticlePubMedGoogle Scholar
  30. Lloyd TA, Wyman CE (2005) Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresour Technol 96:1967–1977. doi:10.1016/j.biortech.2005.01.011 View ArticlePubMedGoogle Scholar
  31. Martin-sampedro R, Capanema EA, Hoeger I, Villar JC, Rojas OJ (2011) Lignin changes after steam explosion and laccase-mediator treatment of eucalyptus wood chips. J Agric Food Chem 59:8761–8769. doi:10.1021/jf201605f View ArticlePubMedGoogle Scholar
  32. Marx S, Ndaba B, Chiyanzu I, Schabort C (2014) Fuel ethanol production from sweet sorghum bagasse using microwave irradiation. Biomass Bioenerg 65:145–150. doi:10.1016/j.biombioe.2013.11.019 View ArticleGoogle Scholar
  33. Monlau F, Latrille E, Carvalho A, Costa D, Steyer J, Carrère H (2013) Enhancement of methane production from sunflower oil cakes by dilute acid pretreatment. Appl Energy 102:1105–1113. doi:10.1016/j.apenergy.2012.06.042 View ArticleGoogle Scholar
  34. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686. doi:10.1016/j.biortech.2004.06.025 View ArticlePubMedGoogle Scholar
  35. Mudhoo A (2012) Biogas production: pretreatment methods in anaerobic digestion. Scrivener Publishing, MassachusettsView ArticleGoogle Scholar
  36. O’Dwyer JP, Zhu L, Granda CB, Chang VS, Holtzapple MT (2008) Neural network prediction of biomass digestibility based on structural features. Biotechnol 24:283–292. doi:10.1021/bp070193v Google Scholar
  37. Overend RP, Chornet E (1987) Fractionation of lignocellulosics by steam-aqueous pretreatments. Philos Trans R Soc London A 321:523–536View ArticleGoogle Scholar
  38. Pakarinen OM, Kaparaju PLN, Rintala JA (2011) Hydrogen and methane yields of untreated, water-extracted and acid (HCl) treated maize in one- and two-stage batch assays. Int J Hydrogen Energy 36:14401–14407. doi:10.1016/j.ijhydene.2011.08.028 View ArticleGoogle Scholar
  39. Qiao J, Qiu Y, Yuan X, Shi X, Xu X, Guo R (2013) Molecular characterization of bacterial and archaeal communities in a full-scale anaerobic reactor treating corn straw. Bioresour Technol 143:512–518. doi:10.1016/j.biortech.2013.06.014 View ArticlePubMedGoogle Scholar
  40. Ramos LP (2003) The chemistry involved in the steam treatment of lignocellulosic materials. Quim Nov. 26:863–871View ArticleGoogle Scholar
  41. Ramos I, Fdz-Polanco M (2013) The potential of oxygen to improve the stability of anaerobic reactors during unbalanced conditions: results from a pilot-scale digester treating sewage sludge. Bioresour Technol 140:80–85. doi:10.1016/j.biortech.2013.04.066 View ArticlePubMedGoogle Scholar
  42. Saha BC, Biswas A, Cotta MA (2008) Microwave pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. J Biobased Mater Bioenergy 2:210–217. doi:10.1166/jbmb.2008.412 View ArticleGoogle Scholar
  43. Saritha M (2012) Biological pretreatment of lignocellulosic substrates for enhanced delignification and enzymatic digestibility. Indian J Microbiol 52:122–130. doi:10.1007/s12088-011-0199-x View ArticlePubMedGoogle Scholar
  44. Siddhu MAH, Li J, Zhang R, Liu J, Ji J, He Y, Chen C, Liu G (2016) Potential of black liquor of potassium hydroxide to pretreat corn stover for biomethane production. BioResources 11:4550–4563View ArticleGoogle Scholar
  45. Singh J, Suhag M, Dhaka A (2015a) Augmented digestion of lignocellulose by steam explosion, acid and alkaline pretreatment methods: a review. Carbohydr Polym 117:624–631. doi:10.1016/j.carbpol.2014.10.012 View ArticlePubMedGoogle Scholar
  46. Singh S, Cheng G, Sathitsuksanoh N, Wu D, Varanasi P, George A, Balan V, Gao X, Kumar R, Dale BE, Wyman CE, Simmons BA (2015b) Comparison of different biomass pretreatment techniques and their impact on chemistry and structure. Front Energy Res Bioenergy Biofuels. 2:1–12. doi:10.3389/fenrg.2014.00062 Google Scholar
  47. Song Z, Yang G, Liu X, Yan Z, Yuan Y, Liao Y (2014) Comparison of seven chemical pretreatments of corn straw for improving methane yield by anaerobic digestion. PLoS ONE 9:1–8. doi:10.1371/journal.pone.0093801 Google Scholar
  48. Sridar V (1998) Microwave radiation as a catalyst for chemical reactions. Curr Sci 74:446–450Google Scholar
  49. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11View ArticlePubMedGoogle Scholar
  50. Talebnia F, Karakashev D, Angelidaki I (2010) Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation. Bioresour Technol 101:4744–4753. doi:10.1016/j.biortech.2009.11.080 View ArticlePubMedGoogle Scholar
  51. Tanjore D, Richard TL (2015) A systems view of lignocellulose hydrolysis. In: Ravindra P (ed) Advances in bioprocess technology. Springer International Publishing, Cham, pp 387–419View ArticleGoogle Scholar
  52. Tanjore D, Shi J, Wyman CE (2011) Chapter: 4 Dilute acid and hydrothermal pretreatment of cellulosic biomass. In: Simmons B (ed) Chemical and biochemical catalysis for next generation biofuels. Royal Society of Chemistry, California, pp 64–88View ArticleGoogle Scholar
  53. Us E, Perendeci NA (2012) Improvement of methane production from greenhouse residues : optimization of thermal and H2SO4 pretreatment process by experimental design. Chem Eng J 181–182:120–131. doi:10.1016/j.cej.2011.11.038 View ArticleGoogle Scholar
  54. Viola E, Cardinale M, Santarcangelo R, Villone A, Zimbardi F (2008) Ethanol from eel grass via steam explosion and enzymatic hydrolysis. Biomass Bioenergy 32:613–618. doi:10.1016/j.biombioe.2007.12.009 View ArticleGoogle Scholar
  55. Wagner AO, Schwarzenauer T, Illmer P (2013) Improvement of methane generation capacity by aerobic pre-treatment of organic waste with a cellulolytic Trichoderma viride culture. J Environ Manage 129:357–360. doi:10.1016/j.jenvman.2013.07.030 View ArticlePubMedGoogle Scholar
  56. Weiwei L, Huan M, Chengmao C, Zhiliang Y, Minhui Z, Xiaoling K, Xiaochen H (2012) Effects of pretreatments with steam-explosion using solar energy and microwave irradiation on biogas production of corn stalk. Trans Chin Soc Agric Eng 28:227–234Google Scholar
  57. Xiao X, Zhang R, He Y, Li Y, Feng L, Chen C, Liu G (2013) Influence of particle size and alkaline pretreatment on the anaerobic digestion of corn stover. BioResources 8:5850–5860View ArticleGoogle Scholar
  58. Xu J (2015) Microwave pretreatment. In: Pandey A, Negi S, Binod P, Larroch C (eds) Pretreatment of biomass processes and technologies, 1st edn. Elsevier, pp 157–172. doi:10.1016/B978-0-12-800080-9.00009-8
  59. Xu S, Selvam A, Wong JWC (2014) Optimization of micro-aeration intensity in acidogenic reactor of a two-phase anaerobic digester treating food waste. Waste Manag 34:363–369. doi:10.1016/j.wasman.2013.10.038 View ArticlePubMedGoogle Scholar
  60. Yang B, Wyman CE (2008) Pretreatment : the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Biorefining 2:26–40. doi:10.1002/bbb View ArticleGoogle Scholar
  61. Yuan X, Li P, Wang H, Wang X, Cheng X, Cui Z (2011) Enhancing the anaerobic digestion of corn stalks using composite microbial pretreatment. J Microbiol Biotechnol 21:746–752. doi:10.4014/jmb.1011.11026 View ArticlePubMedGoogle Scholar
  62. Zheng M, Li X, Li L, Yang X, He Y (2009) Enhancing anaerobic biogasification of corn stover through wet state NaOH pretreatment. Bioresour Technol 100:5140–5145. doi:10.1016/j.biortech.2009.05.045 View ArticlePubMedGoogle Scholar
  63. Zhong W, Zhang Z, Luo Y, Sun S, Qiao W, Xiao M (2011) Effect of biological pretreatments in enhancing corn straw biogas production. Bioresour Technol 102:11177–11182. doi:10.1016/j.biortech.2011.09.077 View ArticlePubMedGoogle Scholar
  64. Zhou S, Zhang Y, Dong Y (2012) Pretreatment for biogas production by anaerobic fermentation of mixed corn stover and cow dung. Energy 46:644–648. doi:10.1016/j.energy.2012.07.017 View ArticleGoogle Scholar
  65. Zhu S, Wu Y, Chen Q, Yu Z, Wang C, Jin S (2006a) Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem 8:325–327. doi:10.1039/b601395c View ArticleGoogle Scholar
  66. Zhu S, Wu Y, Yu Z, Chen Q, Wu G, Yu F, Wang C, Jin S (2006b) Microwave-assisted alkali pre-treatment of wheat straw and its enzymatic hydrolysis. Biosyst Eng 94:437–442. doi:10.1016/j.biosystemseng.2006.04.002 View ArticleGoogle Scholar

Copyright

© The Author(s) 2017