Ahn SJ, Burne RA (2006) The atlA operon of Streptococcus mutans: role in autolysin maturation and cell surface biogenesis. J Bacteriol 188:6877–6888. doi:10.1128/JB.00536-06
Article
CAS
PubMed
PubMed Central
Google Scholar
Ahn SJ, Wen ZT, Brady LJ, Burne RA (2008) Characteristics of biofilm formation by Streptococcus mutans in the presence of saliva. Infect Immun 76:4259–4268. doi:10.1128/IAI.00422-08
Article
CAS
PubMed
PubMed Central
Google Scholar
Ajdić D, McShan WM, McLaughlin RE, Savić G, Chang J, Carson MB, Primeaux C, Tian R, Kenton S, Jia H, Lin S, Qian Y, Li S, Zhu H, Najar F, Lai H, White J, Roe BA, Ferretti JJ (2002) Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc Natl Acad Sci USA 99:14434–14439. doi:10.1073/pnas.172501299
Article
PubMed
PubMed Central
Google Scholar
Allen HK, Trachsel J, Looft T, Casey TA (2014) Finding alternatives to antibiotics. Ann NY Acad Sci 1323:91–100. doi:10.1111/nyas.12468
Article
PubMed
Google Scholar
Bagamboula CF, Uyttendaele M, Debevere J (2004) Inhibitory effect of thyme and basil essential oils, carvacrol, thymol, estragol, linalool and p-cymene towards Shigella sonnei and S. flexneri. Food Microbiol 21:33–42. doi:10.1016/s0740-0020(03)00046-7
Article
CAS
Google Scholar
Bailón-Sánchez ME, Baca P, Ruiz-Linares M, Ferrer-Luque CM (2014) Antibacterial and anti-biofilm activity of AH plus with chlorhexidine and cetrimide. J Endod 40:977–981
Article
PubMed
Google Scholar
Burdock GA, Carabin IG (2004) Generally recognized as safe (GRAS): history and description. Toxicol Lett 150:3–18. doi:10.1016/j.toxlet.2003.07.004
Article
CAS
PubMed
Google Scholar
Burton E, Yakandawala N, LoVetri K, Madhyastha MS (2007) A microplate spectrofluorometric assay for bacterial biofilms. J Ind Microbiol Biotechnol 34:1–4. doi:10.1007/s10295-006-0086-3
Article
CAS
PubMed
Google Scholar
Carabetta VJ, Tanner AW, Greco TM, Defrancesco M, Cristea IM, Dubnau D (2013) A complex of YlbF, YmcA and YaaT regulates sporulation, competence and biofilm formation by accelerating the phosphorylation of Spo0A. Mol Microbiol 88:283–300. doi:10.1111/mmi.12186
Article
CAS
PubMed
PubMed Central
Google Scholar
Ceylan O, Ugur A (2015) Chemical composition and anti-biofilm activity of Thymus sipyleus BOISS. subsp. sipyleus BOISS. var. davisianus RONNIGER essential oil. Arch Pharm Res 38:957–965. doi:10.1007/s12272-014-0516-0
Article
CAS
PubMed
Google Scholar
Chorianopoulos N, Kalpoutzakis E, Aligiannis N, Mitaku S, Nychas G-J, Haroutounian SA (2004) Essential oils of Satureja, Origanum, and Thymus species: chemical composition and antibacterial activities against foodborne pathogens. J Agric Food Chem 52:8261–8267. doi:10.1021/jf049113i
Article
CAS
PubMed
Google Scholar
Craig WJ (1999) Health-promoting properties of common herbs. Am J Clin Nutr 70:491S–499S
CAS
PubMed
Google Scholar
Curtis MA, Zenobia C, Darveau RP (2011) The relationship of the oral microbiotia to periodontal health and disease. Cell Host Microbe 10:302–306. doi:10.1016/j.chom.2011.09.008
Article
CAS
PubMed
PubMed Central
Google Scholar
Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, Yu WH, Lakshmanan A, Wade WG (2010) The human oral microbiome. J Bacteriol 192:5002–5017. doi:10.1128/JB.00542-10
Article
CAS
PubMed
PubMed Central
Google Scholar
Du E, Gan L, Li Z, Wang W, Liu D, Guo Y (2015) In vitro antibacterial activity of thymol and carvacrol and their effects on broiler chickens challenged with Clostridium perfringens. J Anim Sci Biotechnol 6:58. doi:10.1186/s40104-015-0055-7
Article
PubMed
PubMed Central
Google Scholar
Du E, Wang W, Gan L, Li Z, Guo S, Guo Y (2016) Effects of thymol and carvacrol supplementation on intestinal integrity and immune responses of broiler chickens challenged with Clostridium perfringens. J Anim Sci Biotechnolo 7:19. doi:10.1186/s40104-016-0079-7
Article
Google Scholar
Fachini-Queiroz FC, Kummer R, Estevão-Silva CF, Carvalho MD, Cunha JM, Grespan R, Bersani-Amado CA, Cuman RK (2012) Effects of thymol and carvacrol, constituents of Thymus vulgaris L. essential oil, on the inflammatory response. Evid Based Complement Alternat Med. doi:10.1155/2012/657026
PubMed
PubMed Central
Google Scholar
Freires IA, Denny C, Benso B, de Alencar SM, Rosalen PL (2015) Antibacterial activity of essential oils and their isolated constituents against cariogenic bacteria: a systematic review. Molecules 20:7329–7358
Article
CAS
PubMed
Google Scholar
Guarda A, Rubilar JF, Miltz J, Galotto MJ (2011a) The antimicrobial activity of microencapsulated thymol and carvacrol. Int J Food Microbiol 146:144–150. doi:10.1016/j.ijfoodmicro.2011.02.011
Article
CAS
PubMed
Google Scholar
Guarda A, Rubilar JF, Miltz J, Galotto MJ (2011b) The antimicrobial activity of microencapsulated thymol and carvacrol. Int J Food Microbiol 146:144–150. doi:10.1016/j.ijfoodmicro.2011.02.011
Article
CAS
PubMed
Google Scholar
Hastings DC (2000) Non-antibiotic plaque chemotherapy. In: Newman HN, Wilson M (eds) Dental plaque revisited: oral biofilms in health and disease. Bioline Press, Cardiff, pp 523–548
Google Scholar
Helms JA, Della-Fera MA, Mott AE, Frank ME (1995) Effects of chlorhexidine on human taste perception. Arch Oral Biol 40:913–920
Article
CAS
PubMed
Google Scholar
Hyldgaard M, Mygind T, Meyer RL (2012) Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Front Microbiol 3:12. doi:10.3389/fmicb.2012.00012
Article
PubMed
PubMed Central
Google Scholar
Kalemba D, Kunicka A (2003) Antibacterial and antifungal properties of essential oils. Curr Med Chem 10:813–829
Article
CAS
PubMed
Google Scholar
Khan ST, Al-Khedhairy AA, Musarrat J (2015) ZnO and TiO2 nanoparticles as novel antimicrobial agents for oral hygiene: a review. J Nanopart Res 17:276. doi:10.1007/s11051-015-3074-6
Article
Google Scholar
Khan M, Al-Saleem MSM, Alkhathlan HZ (2016a) A detailed study on chemical characterization of essential oil components of two Plectranthus species grown in Saudi Arabia. J Saudi Chem Soci 20:711–721. doi:10.1016/j.jscs.2016.03.006
Article
CAS
Google Scholar
Khan ST, Ahmad J, Ahamed M, Musarrat J, Al-Khedhairy AA (2016b) Zinc oxide and titanium dioxide nanoparticles induce oxidative stress, inhibit growth, and attenuate biofilm formation activity of Streptococcus mitis. J Biol Inorg Chem 21:295–303. doi:10.1007/s00775-016-1339-x
Article
CAS
PubMed
Google Scholar
Khan ST, Musarrat J, Al-Khedhairy AA (2016c) Countering drug resistance, infectious diseases, and sepsis using metal and metal oxides nanoparticles: current status. Coll Surf B Biointerfaces 146:70–83. doi:10.1016/j.colsurfb.2016.05.046
Article
CAS
Google Scholar
Klein MI, Hwang G, Santos PHS, Campanella OH, Koo H (2015) Streptococcus mutans-derived extracellular matrix in cariogenic oral biofilms. Front Cell Infect Microbiol. doi:10.3389/fcimb.2015.00010
PubMed
PubMed Central
Google Scholar
Kojima A, Nakano K, Wada K, Takahashi H, Katayama K, Yoneda M, Higurashi T, Nomura R, Hokamura K, Muranaka Y, Matsuhashi N, Umemura K, Kamisaki Y, Nakajima A, Ooshima T (2012) Infection of specific strains of Streptococcus mutans, oral bacteria, confers a risk of ulcerative colitis. Sci Rep 2:332. doi:10.1038/srep00332
Article
PubMed
PubMed Central
Google Scholar
Krzyściak W, Jurczak A, Kościelniak D, Bystrowska B, Skalniak A (2014) The virulence of Streptococcus mutans and the ability to form biofilms. Eur J Clin Microbiol Infect Dis 33:499–515. doi:10.1007/s10096-013-1993-7
Article
PubMed
Google Scholar
Leistevuo J, Järvinen H, Österblad M, Leistevuo T, Huovinen P, Tenovuo J (2000) Resistance to mercury and antimicrobial agents in Streptococcus mutans isolates from human subjects in relation to exposure to dental amalgam fillings. Antimicrob Agents Chemother 44:456–457
Article
CAS
PubMed
PubMed Central
Google Scholar
Li X, Kolltveit KM, Tronstad L, Olsen I (2000) Systemic diseases caused by oral infection. Clin Microbiol Rev 13:547–558
Article
CAS
PubMed
PubMed Central
Google Scholar
Listl S, Galloway J, Mossey PA, Marcenes W (2015) Global economic impact of dental diseases. J Dent Res 94:1355–1361. doi:10.1177/0022034515602879
Article
CAS
PubMed
Google Scholar
Loesche WJ (1986) Role of Streptococcus mutans in human dental decay. Microbiol Rev 50:353–380
CAS
PubMed
PubMed Central
Google Scholar
Magi G, Marini E, Facinelli B (2015) Antimicrobial activity of essential oils and carvacrol, and synergy of carvacrol and erythromycin, against clinical, erythromycin-resistant Group A Streptococci. Front Microbiol 6:165. doi:10.3389/fmicb.2015.00165
Article
PubMed
PubMed Central
Google Scholar
McBain AJ, Bartolo RG, Catrenich CE, Charbonneau D, Ledder RG, Gilbert P (2003) Effects of a chlorhexidine gluconate-containing mouthwash on the vitality and antimicrobial susceptibility of in vitro oral bacterial ecosystems. Appl Environ Microbiol 69:4770–4776
Article
CAS
PubMed
PubMed Central
Google Scholar
Moore WEC, Moore LVH (1994) The bacteria of periodontal diseases. Periodontology 2000(5):66–77. doi:10.1111/j.1600-0757.1994.tb00019.x
Article
Google Scholar
Mshana RN, Tadesse G, Abate G, Miorner H (1998) Use of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide for rapid detection of rifampin-resistant Mycobacterium tuberculosis. J Clin Microbiol 36:1214–1219
CAS
PubMed
PubMed Central
Google Scholar
Nobbs A (2016) Getting to the heart of the matter: role of Streptococcus mutans adhesin Cnm in systemic disease. Virulence. doi:10.1080/21505594.2016.1212157
PubMed
Google Scholar
Nostro A, Papalia T (2012) Antimicrobial activity of carvacrol: current progress and future prospectives. Recent Pat Antiinfect Drug Discov 7:28–35
Article
CAS
PubMed
Google Scholar
Robbins N, Szilagyi G, Tanowitz HB, Luftschein S, Baum SG (1977) Infective endocarditis caused by Streptococcus mutans. A complication of idiopathic hypertrophic subaortic stenosis. Arch Intern Med 137:1171–1174
Article
CAS
PubMed
Google Scholar
Rose T, Verbeken G, Vos DD, Merabishvili M, Vaneechoutte M, Lavigne R, Jennes S, Zizi M, Pirnay JP (2014) Experimental phage therapy of burn wound infection: difficult first steps. Int J Burns Trauma 4:66–73
PubMed
PubMed Central
Google Scholar
Selwitz RH, Ismail AI, Pitts NB (2007) Dental caries. Lancet 369:51–59. doi:10.1016/S0140-6736(07)60031-2
Article
CAS
PubMed
Google Scholar
Shah B, Davidson PM, Zhong Q (2012) Nanocapsular dispersion of thymol for enhanced dispersibility and increased antimicrobial effectiveness against Escherichia coli O157:H7 and Listeria monocytogenes in model food systems. Appl Environ Microbiol 78:8448–8453
Article
CAS
PubMed
PubMed Central
Google Scholar
Sweeney LC, Dave J, Chambers PA, Heritage J (2004) Antibiotic resistance in general dental practice–a cause for concern? J Antimicrob Chemother 53:567–576. doi:10.1093/jac/dkh137
Article
CAS
PubMed
Google Scholar
Thosar N, Basak S, Bahadure RN, Rajurkar M (2013) Antimicrobial efficacy of five essential oils against oral pathogens: an in vitro study. Eur J Dent 7:S71–S77. doi:10.4103/1305-7456.119078
Article
PubMed
PubMed Central
Google Scholar
Tunkel AR, Sepkowitz KA (2002) Infections caused by viridans streptococci in patients with neutropenia. Clin Infect Dis 34:1524–1529. doi:10.1086/340402
Article
PubMed
Google Scholar
Ultee A, Bennik MH, Moezelaar R (2002) The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl Environ Microbiol 68:1561–1568
Article
CAS
PubMed
PubMed Central
Google Scholar
Wade WG (2013) The oral microbiome in health and disease. Pharmacol Res 69:137–143. doi:10.1016/j.phrs.2012.11.006
Article
CAS
PubMed
Google Scholar
Xu J, Zhou F, Ji BP, Pei RS, Xu N (2008) The antibacterial mechanism of carvacrol and thymol against Escherichia coli. Lett Appl Microbiol 47:174–179. doi:10.1111/j.1472-765X.2008.02407.x
Article
CAS
PubMed
Google Scholar
Yamamoto Y, Higuchi M, Poole LB, Kamio Y (2000) Role of the dpr product in oxygen tolerance in Streptococcus mutans. J Bacteriol 182:3740–3747
Article
CAS
PubMed
PubMed Central
Google Scholar