Abdel-Mawgoud AM, Lépine F, Déziel E. Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol. 2010;86:1323–36. doi:10.1007/s00253-010-2498-2.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bergström S, Theorell H, Davide H. Pyolipic acid, a metabolic product of Pseudomonas pyocyanea, active against Mycobacterium tuberculosis. Ark Kemi Miner Och Geol. 1946;23A:1–12.
Google Scholar
Carrillo PG, Mardaraz C, Pitta-Alvarez SI, Giulietti AM. Isolation and selection of biosurfactant-producing bacteria. World J Microbiol Biotechnol. 1996;12:82–4. doi:10.1007/BF00327807.
Article
CAS
PubMed
Google Scholar
Cha M, Lee N, Kim MM, Kim MM, Lee S. Heterologous production of Pseudomonas aeruginosa EMS1 biosurfactant in Pseudomonas putida. Bioresour Technol. 2008;99:2192–9. doi:10.1016/j.biortech.2007.05.035.
Article
CAS
PubMed
Google Scholar
Chandrasekaran EV, Bemiller JN. Constituent analyses of glycosaminoglycans. In: Whistler RL, Bemiller JN, editors. Methods in carbohydrate chemistry. New York: Academic Press Inc; 1980. p. 372.
Google Scholar
Chen C-Y, Baker SC, Darton RC. Continuous production of biosurfactant with foam fractionation. J Chem Technol Biotechnol. 2006;81:1915–22.
Article
CAS
Google Scholar
de Eugenio LI, Escapa IF, Morales V, Dinjaski N, Galán B, García JL, Prieto MA. The turnover of medium-chain-length polyhydroxyalkanoates in Pseudomonas putida KT2442 and the fundamental role of PhaZ depolymerase for the metabolic balance. Environ Microbiol. 2010;12:207–21. doi:10.1111/j.1462-2920.2009.02061.x.
Article
PubMed
Google Scholar
de Lorenzo V, Eltis L, Kessler B, Timmis KN. Analysis of Pseudomonas gene products using lacIq/Ptrp-lac plasmids and transposons that confer conditional phenotypes. Gene. 1993;123:17–24. doi:10.1016/0378-1119(93)90533-9.
Article
PubMed
Google Scholar
Déziel E, Lépine F, Dennie D, Boismenu D, Mamer OA, Villemur R. Liquid chromatography/mass spectrometry analysis of mixtures of rhamnolipids produced by Pseudomonas aeruginosa strain 57RP grown on mannitol or naphthalene. Biochim Biophys Acta Mol Cell Biol Lipids. 1999;1440:244–52. doi:10.1016/S1388-1981(99)00129-8.
Article
Google Scholar
Dubey KV, Juwarkar AA, Singh SK. Adsorption-desorption process using wood-based activated carbon for recovery of biosurfactant from fermented distillery wastewater. Biotechnol Prog. 2005;21:860–7. doi:10.1021/bp040012e.
Article
CAS
PubMed
Google Scholar
Follonier S, Panke S, Zinn M. A reduction in growth rate of Pseudomonas putida KT2442 counteracts productivity advances in medium-chain-length polyhydroxyalkanoate production from gluconate. Microb Cell Fact. 2011;10:25. doi:10.1186/1475-2859-10-25.
Article
PubMed Central
CAS
PubMed
Google Scholar
Goldstein BP. Resistance to rifampicin: a review. J Antibiot. 2014;67:625–30. doi:10.1038/ja.2014.107
(Tokyo).
Article
CAS
PubMed
Google Scholar
Grieves RB, Wang S-L. Foam separation of Pseudomonas fluorescens and Bacillus subtilis var. niger. Appl Microbiol. 1967a;15:76–81.
PubMed Central
CAS
PubMed
Google Scholar
Grieves RB, Wang SL. Foam separation of bacteria with a cationic surfactant. Biotechnol Bioeng. 1967b;9(2):187–94.
Article
Google Scholar
Gruber T. Verfahrenstechnische aspekte der kontinuierlichen produktion von biotensiden am beispiel der rhamnolipide. Germany: Universität Stuttgart; 1991.
Google Scholar
Guerra-Santos L, Käppeli O, Fiechter A. Pseudomonas aeruginosa biosurfactant production in continuous culture with glucose as carbon source. Appl Environ Microbiol. 1984;48:301–5.
PubMed Central
CAS
PubMed
Google Scholar
Guerra-Santos LH, Käppeli O, Fiechter A. Dependence of Pseudomonas aeruginosa continous culture biosurfactant production on nutritional and environmental factors. Appl Microbiol Biotechnol. 1986;24:443–8. doi:10.1007/BF00250320.
CAS
Google Scholar
Henkel M, Schmidberger A, Kühnert C, Beuker J, Bernard T, Schwartz T, Syldatk C, Hausmann R. Kinetic modeling of the time course of N-butyryl-homoserine lactone concentration during batch cultivations of Pseudomonas aeruginosa PAO1. Appl Microbiol Biotechnol. 2013;97:7607–16.
Article
CAS
PubMed
Google Scholar
Henkel M, Schmidberger A, Vogelbacher M, Kühnert C, Beuker J, Bernard T, Schwartz T, Syldatk C, Hausmann R. Kinetic modeling of rhamnolipid production by Pseudomonas aeruginosa PAO1 including cell density-dependent regulation. Appl Microbiol Biotechnol. 2014;98:7013–25. doi:10.1007/s00253-014-5750-3.
Article
CAS
PubMed
Google Scholar
Heyd M, Franzreb M, Berensmeier S. Continuous rhamnolipid production with integrated product removal by foam fractionation and magnetic separation of immobilized Pseudomonas aeruginosa. Biotechnol Prog. 2011;27:706–16. doi:10.1002/btpr.607.
Article
CAS
PubMed
Google Scholar
Heyd M, Kohnert A, Tan TH, Nusser M, Kirschhöfer F, Brenner-Weiss G, Franzreb M, Berensmeier S, Kirschhofer F, Brenner-Weiss G, Franzreb M, Berensmeier S. Development and trends of biosurfactant analysis and purification using rhamnolipids as an example. Anal Bioanal Chem. 2008;391:1579–90. doi:10.1007/s00216-007-1828-4.
Article
CAS
PubMed
Google Scholar
Hubbuch JJ, Brixius PJ, Lin D-Q, Mollerup I, Kula M-R. The influence of homogenisation conditions on biomass-adsorbent interactions during ion-exchange expanded bed adsorption. Biotechnol Bioeng. 2006;94:543–53.
Article
CAS
PubMed
Google Scholar
Jarvis FG, Johnson MJ. A glyco-lipide produced by Pseudomonas aeruginosa. J Am Chem Soc. 1949;71:4124–6.
Article
CAS
Google Scholar
Jensen PR, Hammer K. The sequence of spacers between the consensus sequences modulates the strength of prokaryotic promoters. Appl Envir Microbiol. 1998;64:82–7.
CAS
Google Scholar
Kovach ME, Elzer PH, Steven Hill D, Robertson GT, Farris MA, Roop RMM, Peterson KM, Hill DS, Robertson GT, Farris MA, Roop RMM, Peterson KM. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene. 1995;166:175–6. doi:10.1016/0378-1119(95)00584-1.
Article
CAS
PubMed
Google Scholar
Küpper B, Mause A, Halka L, Imhoff A, Nowacki C, Wichmann R. Fermentative produktion von monorhamnolipiden im Pilotmaßstab—herausforderungen der Maßstabsvergrößerung. Chemie Ing Tech. 2013;85:834–40. doi:10.1002/cite.201200194.
Article
Google Scholar
Lang S, Wullbrandt D. Rhamnose lipids—biosynthesis, microbial production and application potential. Appl Microbiol Biotechnol. 1999;51:22–32. doi:10.1007/s002530051358.
Article
CAS
PubMed
Google Scholar
Loeschcke A, Thies S. Pseudomonas putida—a versatile host for the production of natural products. Appl Microbiol Biotechnol. 2015;99:6197–214. doi:10.1007/s00253-015-6745-4.
Article
PubMed Central
CAS
PubMed
Google Scholar
Manso Pajarron A, de Koster CG, Heerma W, Schmidt M, Haverkamp J. Structure identification of natural rhamnolipid mixtures by fast atom bombardment tandem mass spectrometry. Glycoconj J. 1993;10:219–26. doi:10.1007/BF00702203.
Article
CAS
PubMed
Google Scholar
Mukherjee S, Das P, Sen R. Towards commercial production of microbial surfactants. Trends Biotechnol. 2006;24:509–15. doi:10.1016/j.tibtech.2006.09.005.
Article
CAS
PubMed
Google Scholar
Müller MM, Hörmann B, Syldatk C, Hausmann R. Pseudomonas aeruginosa PAO1 as a model for rhamnolipid production in bioreactor systems. Appl Microbiol Biotechnol. 2010;87:167–74. doi:10.1007/s00253-010-2513-7.
Article
PubMed
Google Scholar
Müller MM, Kügler JH, Henkel M, Gerlitzki M, Hörmann B, Pöhnlein M, Syldatk C, Hausmann R. Rhamnolipids-next generation surfactants? J Biotechnol. 2012;162:366–80. doi:10.1016/j.jbiotec.2012.05.022.
Article
PubMed
Google Scholar
Mulligan CN, Gibbs BF. Recovery of biosurfactants by ultrafiltration. J Chem Technol Biotechnol. 1990;47:23–9. doi:10.1002/jctb.280470104.
Article
CAS
PubMed
Google Scholar
Mulligan CN, Mahmourides G, Gibbs BF. The influence of phosphate metabolism on biosurfactant production by Pseudomonas aeruginosa. J Biotechnol. 1989;12:199–210. doi:10.1016/0168-1656(89)90041-2.
Article
CAS
Google Scholar
Nelson KE, Weinel C, Paulsen IT, Dodson RJ, Hilbert H, dos Santos VAPM, Fouts DE, Gill SR, Pop M, Holmes M, Brinkac L, Beanan M, DeBoy RT, Daugherty S, Kolonay J, Madupu R, Nelson W, White O, Peterson J, Khouri H, Hance I, Lee PC, Holtzapple E, Scanlan D, Tran K, Moazzez A, Utterback T, Rizzo M, Lee K, Kosack D, Moestl D, Wedler H, Lauber J, Stjepandic D, Hoheisel J, Straetz M, Heim S, Kiewitz C, Eisen J, Timmis KN, Düsterhöft A, Tümmler B, Fraser CM. Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol. 2002;4:799–808. doi:10.1046/j.1462-2920.2002.00366.x.
Article
CAS
PubMed
Google Scholar
Ochsner UA. Genetics and biochemistry of Pseudomonas aeruginosa rhamnolipid biosurfactant synthesis. 1993.
Ochsner UA, Reiser J, Fiechter A, Witholt B. Production of Pseudomonas
aeruginosa rhamnolipid biosurfactants in heterologous hosts. Appl Env Microbiol. 1995;61:3503–6.
CAS
Google Scholar
Persson A, Molin G, Andersson N, Sjöholm J. Biosurfactant yields and nutrient consumption of Pseudomonas fluorescens 378 studied in a microcomputer controlled multifermentation system. Biotechnol Bioeng. 1990;36:252–5. doi:10.1002/bit.260360306.
Article
CAS
PubMed
Google Scholar
Reiling HE, Thanei-Wyss U, Guerra-Santos L, Hirt R, Käppeli O, Fiechter A. Pilot plant production of rhamnolipid biosurfactant by Pseudomonas aeruginosa. Appl Environ Microbiol. 1986;51:985–9.
PubMed Central
CAS
PubMed
Google Scholar
Sarachat T, Pornsunthorntawee O, Chavadej S, Rujiravanit R. Purification and concentration of a rhamnolipid biosurfactant produced by Pseudomonas aeruginosa SP4 using foam fractionation. Bioresour Technol. 2010;101:324–30. doi:10.1016/j.biortech.2009.08.012.
Article
CAS
PubMed
Google Scholar
Schenk T, Schuphan I, Schmidt B. High-performance liquid chromatographic determination of the rhamnolipids produced by Pseudomonas aeruginosa. J Chromatogr A. 1995;693:7–13. doi:10.1016/0021-9673(94)01127-Z.
Article
CAS
PubMed
Google Scholar
Somasundaran P. Separation using foaming techniques. Sep Sci. 1975;10:93–109.
CAS
Google Scholar
Troeschel SC, Drepper T, Leggewie C, Streit WR, Jaeger K-E. Novel tools for the functional expression of metagenomic DNA. Methods Mol Biol. 2010;668:117–39. doi:10.1007/978-1-60761-823-2_8.
Article
CAS
PubMed
Google Scholar
Wang S, Mulligan CN. Rhamnolipid foam enhanced remediation of cadmium and nickel contaminated soil. Water Air Soil Pollut. 2004;157:315–30. doi:10.1023/B:WATE.0000038904.91977.f0.
Article
CAS
Google Scholar
Wei YH, Chou CL, Chang JS. Rhamnolipid production by indigenous Pseudomonas aeruginosa J4 originating from petrochemical wastewater. Biochem Eng J. 2005;27:146–54. doi:10.1016/j.bej.2005.08.028.
Article
CAS
Google Scholar
Willenbacher J, Yeremchuk W, Mohr T, Syldatk C, Hausmann R. Enhancement of surfactin yield by improving the medium composition and fermentation process. AMB Express. 2015;5:145. doi:10.1186/s13568-015-0145-0.
PubMed
Google Scholar
Willenbacher J, Zwick M, Mohr T, Schmid F, Syldatk C, Hausmann R. Evaluation of different Bacillus strains in respect of their ability to produce Surfactin in a model fermentation process with integrated foam fractionation. Appl Microbiol Biotechnol. 2014;98:9623–32. doi:10.1007/s00253-014-6010-2.
Article
CAS
PubMed
Google Scholar
Wilms B, Hauck A, Reuss M, Syldatk C, Mattes R, Siemann M, Altenbuchner J. High-cell-density fermentation for production of L-N-carbamoylase using an expression system based on the Escherichia coli rhaBAD promoter. Biotechnol Bioeng. 2001;73:95–103. doi:10.1002/bit.1041.
Article
CAS
PubMed
Google Scholar
Winterburn JB, Russell AB, Martin PJ. Integrated recirculating foam fractionation for the continuous recovery of biosurfactant from fermenters. Biochem Eng J. 2011;54:132–9.
Article
CAS
Google Scholar
Wittgens A, Tiso T, Arndt TT, Wenk P, Hemmerich J, Müller C, Wichmann R, Küpper B, Zwick M, Wilhelm S, Hausmann R, Syldatk C, Rosenau F, Blank LM. Growth independent rhamnolipid production from glucose using the non-pathogenic Pseudomonas putida KT2440. Microb Cell Fact. 2011;10:80. doi:10.1186/1475-2859-10-80.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang Y, Miller RM. Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Appl Environ Microbiol. 1992;58:3276–82.
PubMed Central
CAS
PubMed
Google Scholar