Araujo FF, Henning AA, Hungria M (2005) Phytohormones and antibiotics produced by Bacillus subtilis and their effects on seed pathogenic fungi and on soybean root development. World J Microbiol Biotechnol 21:1637–1642
Google Scholar
Ashraf MA, Rasool M, Mirza MS (2011) Nitrogen fixation and indole acetic acid production potential of bacteria isolated from rhizosphere of sugarcane (Saccharum officinarum L.). Adv Biol Res 5:348–355
CAS
Google Scholar
Baier R, Schiene K, Kohring B, Flaschel E, Niehaus K (1999) Alfafa and tobacco cells react differentially to chitin oligo-saccharides and Sinorhizobium meliloti nodulation factors. Planta 210:157–164
Article
CAS
PubMed
Google Scholar
Bashan Y, de Bashan LE (2010) How the plant growth-promoting bacterium Azospirillum promotes plant growth—a critical assessment. Adv Agron 108:77–136
Article
CAS
Google Scholar
Bashan Y, de-Bashan LE, Prabhu SR, Hernandez J (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378:1–33
Article
CAS
Google Scholar
Cassán F, Maiale S, Masciarelli O, Vidal A, Luna V, Ruiz O (2009) Cadaverine production by Azospirillum brasilense and its possible role in plant growth promotion and osmotic stress mitigation. Eur J Soil Biol 45:12–19
Article
Google Scholar
Cassán F, Penna C, Creus C, Radovancich D, Monteleleone E, Salamone IG, Di Salvo L, Mentel I, García J, Pasarello MCM, Lett L, Puente M, Correa O, Punschke VK, Massa R, Roosi A, Díaz M, Catafesta M, Righes S, Carletti S, Cáceres ER (2010) Protocolo para el control de calidad de inoculantes que contienen Azospirillum sp. Associación Argentina de Microbiología, Buenos Aires. (Documento de Procedimientos de la REDCAI, 2. ISBN 978-987-98475-9-6)
Cassán F, Vanderleyden J, Spaepen S (2013) Physiological and agronomical aspects of phytohormone production by model plant-growth-promoting rhizobacteria (PGPR) belonging to the genus Azospirillum. J Plant Growth Regul 33:440–459
Article
Google Scholar
Castro-Sowinski S, Herschkovitz Y, Okon Y, Jurkevitch E (2007) Effects of inoculation with plant growth-promoting rhizobacteria on resident rhizosphere microorganisms. FEMS Microbiol Lett 276:1–11
Article
CAS
PubMed
Google Scholar
Chen C, McIver J, Yang Y, Bai Y, Schultz B, McIver A (2006) Foliar application of lipo-chitooligosaccharides (Nod Factors) to tomato (Lycopersicon esculentum) enhances flowering and fruit production. Can J Plant Sci 87:365–372
Google Scholar
Chibeba AM, Guimarães MF, Brito OR, Araujo RS, Nogueira MA, Hungria M (2015) Co-inoculation of soybean with Bradyrhizobium and Azospirillum promotes early nodulation. Am J Plant Sci 6:1641–1649
Article
Google Scholar
Cooper JE (2007) Early interactions between legumes in rhizobia: disclosing complexity in a molecular dialogue. J Appl Microbiol 103:1355–1365
Article
CAS
PubMed
Google Scholar
D’Haeze W, Holsters M (2002) Nod factors structures, responses, and perception during initiation of nodule development. Glycobiology 12:79–105
Article
Google Scholar
Dardanelli MS, de Córdoba FJF, Espuny MR, Carvajal MAR, Díaz MES, Serrano AMG, Okon Y, Megías M (2008) Effect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod Factor production under salt stress. Soil Biol Biochem 40:2713–2721
Article
CAS
Google Scholar
De Jong AJ, Heidstra R, Spaink HP, Hartog MV, Meijer EA, Hendriks T, Schiavo FL, Terzi M, Bisseling T, van Kammen A, de Vries SC (1993) A plant somatic embryo mutant is rescued by rhizobial lipo-oligossacharides. Plant Cell 5:615–620
Article
PubMed Central
PubMed
Google Scholar
de Rijke E, Out P, Niessen WMA, Ariese F, Gooijer C, Brikman UAT (2006) Analytical separation and detection methods for flavonoids. J Chromatogr 1112:31–63
Article
Google Scholar
Debellé F, Plazanet C, Roche P, Pujol C, Savagnac A, Rosenberg C, Promé J, Dénarié J (2003) The NodA proteins of Rhizobium meliloti specify the N-acylation of nod factors by different fatty acids. Mol Microbiol 22:303–314
Article
Google Scholar
del Cerro P, Rolla-Santos AAP, Gomes DF, Marks BB, Espuny MR, Rodriguez-Carvajal MA, Soria-Diaz E, Nakatani AS, Hungria M, Ollero FJ, Megías M (2015a) Opening the “black box” of nodD3, nodD4 and nodD5 genes of Rhizobium tropici strain CIAT 899. BMC Genom. doi:10.1186/s12864-015-2033-z)
Google Scholar
del Cerro P, Rolla-Santos AAP, Gomes DF, Marks BB, Pérez-Montaño F, Rodríguez-Carvajal MA, Nakatani AS, Gil-Serrano A, Megías M, Ollero FJ, Hungria M (2015b) Regulatory nodD1 and nodD2 genes of Rhizobium tropici strain CIAT899 and their roles in the early stages of molecular signaling and host-legume nodulation. BMC Genom 16:251. doi:10.1186/s12864-015-1458-8
Article
Google Scholar
Díaz-Zorita M, Fernandez-Canigia MV (2009) Field performance of a liquid formulation of Azospirillum brasilense on dryland wheat productivity. Eur J Soil Biol 45:3–11
Article
Google Scholar
Döbereiner J, Baldani VLD, Baldani JI (1995) Como isolar e identificar bactérias diazotróficas de plantas não-leguminosas. Embrapa-SPI, Itaguaí
Google Scholar
Embrapa (2011) Cultivo do Milho—Sistema de Produção, 1. Available at: http://www.cnpms.embrapa.br/publicacoes/milho_7_ed/index.htm. Accessed 10 May 2015
Estévez J, Soria-Díaz ME, de Córdoba FF, Morón B, Manyani H, Gil A, Thomas-Oates J, van Brussel AAN, Dardanelli MS, Sousa C, Megías M (2009) Different and new nod factors produced by Rhizobium tropici CIAT899 following Na+ stress. FEMS Microbiol Lett 293:220–231
Article
PubMed
Google Scholar
Folch-Mallol JL, Marroquí S, Sousa C, Manyani H, López-Lara IM, van der Drift KMGM, Haverkamp J, Quinto C, Gil-Serrano A, Thomas-Oates J, Spaink HP, Megías M (1996) Characterization of Rhizobium tropici CIAT 899 nodulation factors: the role of nodH and nodPQ genes in their sulfation. Mol Plant Microbe Interact 9:151–163
Article
CAS
PubMed
Google Scholar
Fuentes-Ramirez LE, Caballero-Mellado J (2005) Bacterial biofertilizers. In: Sadiqui ZA (ed) PGPR: Biological control and biofertilization. Springer, Dordrecht, pp 143–172
Google Scholar
Guasch-Vidal B (2011) Selección y caracterización de mutantes de Rhizobium tropici CIAT 899 afectados em la producción de factores Nod en condiciones de estrés salino. Tesis Doctoral, Universidad de Sevilla
Hameeda B, Rupela OP, Reddy G, Satyavani K (2006) Application of plant growth-promoting bacteria associated with composts and macrofauna for growth promotion of pearl millet (Pennisetum glaucum L.). Biol Fertil Soils 43:221–227
Article
Google Scholar
Hartmann A, Bashan Y (2009) Ecology and application of Azospirillum and other plant growth-promoting bacteria (PGPB). Eur J Soil Biol 45:1–2
Article
Google Scholar
Hungria M (2011) Inoculação com Azospirillum brasilense: inovação em rendimento a baixo custo. Embrapa Soja, Londrina. (Circular Técnica, 325). ISSN, 1516-781X
Hungria M, Araujo RS (1994) Manual de métodos empregados em estudos de microbiologia agrícola. EMBRAPA-SPI, Brasília, Brazil, p 542. (ISSN 0101-9716)
Hungria M, Mendes IC (2015) Nitrogen fixation with soybean: the perfect symbiosis? In: De Bruijn F (ed) Biological nitrogen fixation., v.2, chapter 99. Wiley, NJ, pp 1005–1019
Hungria M, Phillips DA (1993) Effects of a seed color mutation on rhizobial nod-gene-inducing flavonoids and nodulation in common bean. Mol Plant Microbe Interact 6:418–422
Article
CAS
Google Scholar
Hungria M, Johnston AWB, Phillips DA (1992) Effects of flavonoids released naturally from bean (Phaseolus vulgaris) on nodD-regulated gene transcription in Rhizobium leguminosarum bv. phaseoli. Mol Plant Microbe Interact 5:199–203
Article
CAS
PubMed
Google Scholar
Hungria M, Campo RJ, Souza EM, Pedrosa FO (2010) Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yield of maize and wheat in Brazil. Plant Soil 331:413–425
Article
CAS
Google Scholar
Hungria M, Nogueira MA, Araujo RS (2013) Co-inoculation of soybeans and common beans with rhizobia and azospirilla: strategies to improve sustainability. Biol Fertil Soils 49:791–801. doi:10.1007/s00374-012-0771-5
Article
Google Scholar
Hungria M, Nogueira MA, Araujo RS (2015a) Alternative methods and time for soybean inoculation to overcome adverse conditions at sowing. Afr J Agric Res 10:2329–2338
Article
Google Scholar
Hungria M, Nogueira MA, Araujo RS (2015b) Soybean seed co-inoculation with Bradyrhizobium spp. and Azospirillum brasilense: a new biotechnological tool to improve yield and sustainability. Am J Plant Sci 6:811–817
Article
CAS
Google Scholar
Khan W (2003) Plant responses to signaling compounds. Thesis, McGill University
Khan W, Prithiviraj B, Smith DL (2008) Nod Factor [Nod Bj V (C18:1, MeFuc)] and lumichrome enhances photosynthesis and growth of corn and soybean. J Plant Physiol 165:1342–1351
Article
CAS
PubMed
Google Scholar
Liang Y, Cao Y, Tanaka K, Thibivilliers S, Wan J, Choi J, Kang C, Qiu J, Stacey G (2013) Nonlegumes respond to rhizobial nod factors by suppressing the innate immune response. Science 341:1384–1387
Article
CAS
PubMed
Google Scholar
MAPA (Ministério da Agricultura, Pecuária e Abastecimento). Anexo à IN SDA 13, de 24/03/2011. (2011) Requisitos mínimos para avaliação da viabilidade e eficiência agronômica de cepas, produtos e tecnologias relacionados à micro-organismos promotores de crescimento. Available at. <http://www.agricultura.gov.br/arq_editor/file/vegetal/RegistroAutorizacoes/Registro%20de%20Estabelecimento%20e%20Produto/IN%2013-2011%20inocul%20-%20protocolo%20-%20microorg%20promotores%20de%20crescimento%20-%20alterado%203-5-12.pdfs>. Accessed 13 July 2015
Marks BB, Megías M, Nogueira MA, Hungria M (2013) Biotechnological potencial of rhizobial metabolites to enhance the performance of Bradyrhizobium spp. and Azospirillum brasilense inoculants with soybean and maize. AMB Express 3:21. doi:10.1186/2191-0855-3-21
Massoud ON, Morsy EM, El-Batanony NH (2009) Field response of snap bean (Phaseolus vulgaris L.) to N2-fixers Bacillus circulans and arbuscular mycorrhizal fungi inoculation through accelerating rock phosphate and feldspar weathering. Aust J Basic Appl Sci 3:844–852
CAS
Google Scholar
Miransari M, Smith D (2009) Rhizobial lipo-chitooligosaccharides and gibberellins enhance barley (Hordeum vulgare L.) seed germination. Biotechnology 8:270–275
Article
CAS
Google Scholar
Morón B, Soría-Díaz ME, Ault J, Verroios G, Noreen S, Rodríguez-Navarro DN, Gil-Serrano A, Thomas-Oates J, Megías M, Sousa C (2005) Low pH changes the profile of nodulation factors produced by Rhizobium tropici CIAT899. Chem Biol 12:1029–1040
Article
PubMed
Google Scholar
Mulder L, Lefebvre B, Cullimore D, Imberty A (2006) LysM domains of Medicago truncatula NFP protein involved in Nod Factor perception, glycosylation state, molecular modeling and docking of chitooligosaccharides and Nod Factors. Glycobiology 16:801–809
Article
CAS
PubMed
Google Scholar
Okon Y, Kapulnik Y (1986) Development and function of Azospirillum-inoculated roots. Plant Soil 90:3–16
Article
CAS
Google Scholar
Okon Y, Labandera-Gonzalez CA (1994) Agronomic applications of Azospirillum: an evaluation of 20 years worldwide field inoculation. Soil Biol Biochem 26:1591–1601
Article
CAS
Google Scholar
Olah B, Brière C, Bécard G, Dénarié J, Gough C (2005) Nod Factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling pathway. Plant J 44:195–207
Article
CAS
PubMed
Google Scholar
Ormeño-Orrillo E, Menna P, Almeida LGP, Ollero FJ, Nicolás MF, Rodrigues EP, Nakatami AS, Batista JSS, Chueire LMO, Souza RC, Vasconcelos ATR, Megías M, Hungria M, Martínez-Romero E (2012) Genomic basis of broad host range and environmental adaptability of Rhizobium tropici CIAT899 and Rhizobium sp. PRF81 which are used in inoculants for common bean (Phaseolus vulgaris L.). BMC Genom 13:735
Article
Google Scholar
Phillips DA (2000) Biosynthesis and release of rhizobial nodulation gene inducers by legumes. In: Triplett (ed) Prokariotic nitrogen fixation: a model system for the analysis of a biological process. Horizon Scientific Press, Wymondham, pp 349–364
Prithiviraj B, Zhou X, Souleimanov A, Kahn WM, Smith DL (2003) A host-specific bacteria-to-plant signal molecule (Nod Factor) enhances germination and early growth of diverse crop plants. Planta 216:437–445
CAS
PubMed
Google Scholar
Rélic B, Talmont F, Korsinska J, Golinowski W, Prome JC, Broughton WJ (1993) Biological activity of Rhizobium sp. NGR234 Nod Factors on Macroptillium atropurpureum. Mol Plant Microbe Interact 6:764–774
Article
PubMed
Google Scholar
Riely BK, Ané JM, Penmetsa RV, Cook DR (2004) Genetic and genomic analysis in model legumes bring Nod-Factor signaling to center stage. Curr Opin Plant Biol 7:408–413
Article
CAS
PubMed
Google Scholar
Rodrigues EP, Rodrigues LS, Oliveira ALM, Baldani VLD, Teixeira KRS, Urquiaga S, Reis VM (2008) Azospirillum amazonense inoculation: effects on growth, yield and N2 fixation of rice (Oriza sativa L.). Plant Soil 302:249–261
Article
CAS
Google Scholar
Rodriguez H, Gonzalez T, Goire I, Bashan Y (2004) Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum ssp. Naturwissenschaften 91:552–555
Article
CAS
PubMed
Google Scholar
Sanjuan J, Carlson RW, Spaink HP, Bhat UR, Barbour WM, Glushka J, Stacey G (1992) A 2-O-methylfucose moiety is present in the lipo-oligosaccharide nodulation signal of Bradyrhizobium japonicum. Proc Natl Acad Sci 89:8789–8793
Article
PubMed Central
CAS
PubMed
Google Scholar
Smith S, Habib A, Kang Y, Legget M, Díaz-Zorita M (2015) LCO applications provide improved responses with legumes and nonlegumes. In: de Bruijn F (ed) Biological nitrogen fixation, v.2, chapter 107. John Wiley & Sons, Inc, Hoboken, NJ, USA, pp 1077–1086. doi:10.1002/9781119053095.ch107
Soria-Díaz ME, Tejero-Mateo P, Espartero JL, Rodríguez-Carvajal MA, Morón B, Sousa C, Megías M, Amarger M, Thomas-Oates J, Gil-Serrano AM (2003) Structural determination of the lipo-chitin oligosaccharide nodulation signal produced by Rhizobium giardinii H152. Carbohydr Res 338:237–250
Article
PubMed
Google Scholar
Souleimanov A, Prithiviraj B, Smith DL (2002) The major Nod Factor of Bradyrhizobium japonicum promotes early growth of soybean and corn. J Exp Bot 53:1929–1934
Article
CAS
PubMed
Google Scholar
Spaink H, Kondorosi A, Hooykaas PJJ (1998) The Rhizobiaceae: molecular biology of model plant-associated bacteria. Kluwer Academia Publishers, Dordrecht
Book
Google Scholar
Staehelin C, Granado J, Muller J, Wiemeken A, Mellor RB, Felix G, Regenass M, Broughton WJ, Boller T (1994) Perception of Rhizobium nodulation factor by tomato cells and inactivation by roots chitinases. Proc Natl Acad Sci USA 91:2196–2200
Article
PubMed Central
CAS
PubMed
Google Scholar
Strzelczyk E, Kamper M, Li C (1994) Cytocinin-like-substances and ethylene production by Azospirillum in media with different carbon sources. Microbiol Res 149:55–60
Article
CAS
Google Scholar
Tien TM, Gaskins MH, Hubbel DH (1979) Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). Appl Environ Microbiol 37:1016–1024
PubMed Central
CAS
PubMed
Google Scholar
Wang E, Huijun W, Junqing Q, Jun L, Yanfei X, Xuewen G (2009) Molecular mechanism of plant growth promoting and induced systemic resistance to tobacco mosaic virus by Bacillus spp. J Microbiol Biotechnol 19:1250–1258
Article
CAS
PubMed
Google Scholar
Zawonski MS, Ameneiros M, Benavides MP, Vázquez S, Groppa MD (2011) Response to saline stress and aquaporin expression in Azospirillum-inoculated barley seedlings. Appl Microbiol Biotechnol 90:1389–1397
Article
Google Scholar