Abeles FB, Morgan PW, Saltveit ME Jr: Ethylene in Plant Biology. Academic press, San Diego; 1992.
Google Scholar
Alphand V, Archelas A, Furstoss R: Microbial transformations 16. One-step synthesis of a pivotal prostaglandin chiral synthon via a highly enantioselective microbiological Baeyer-Villiger type reaction. Tetrahedron Lett 1989, 30(28):3663–3664. 10.1016/S0040-4039(01)80476-7
CAS
Google Scholar
Balke K, Kadow M, Mallin H, Saß S, Bornscheuer UT: Discovery, application and protein engineering of Baeyer-Villiger monooxygenases for organic synthesis. Org Biomol Chem 2012, 10(31):6249–6265. 10.1039/c2ob25704a
CAS
PubMed
Google Scholar
Blasig R, Mauersberger S, Riege P, Schunck W-H, Jockisch W, Franke P, Müller H-G: Degradation of long-chain n -alkanes by the yeast Candida maltosa . Appl Microbiol Biotechnol 1988, 28(6):589–597.
CAS
Google Scholar
Bruyn J: An intermediate product in the oxidation of hexadecene-1 by Candida lipolytica . Koninkl Ned Acad Wetenschap Proc Ser C 1954, 57: 41–44.
Google Scholar
Cheesbrough TM, Kolattukudy P: Microsomal preparation from an animal tissue catalyzes release of carbon monoxide from a fatty aldehyde to generate an alkane. J Biol Chem 1988, 263(6):2738–2743.
CAS
PubMed
Google Scholar
Coon MJ: Omega oxygenases: nonheme-iron enzymes and P450 cytochromes. Biochem Biophys Res Commun 2005, 338(1):378–385. 10.1016/j.bbrc.2005.08.169
CAS
PubMed
Google Scholar
De Boer TD, Backer HJ: Diazomethane. In Organic Synthesis, vol 36. Edited by: Leonard NJ. Wiley, New York; 1956:14–16.
Google Scholar
Fonken GS, Murray HC, Reineke LM: Pathway of progesterone oxidation by Cladosporium resinae . J Am Chem Soc 1960, 82(20):5507–5508. 10.1021/ja01505a053
Google Scholar
Forney F, Markovetz A: Oxidative degradation of methyl ketones II. Chemical pathway for degradation of 2-tridecanone by Pseudomonas multivorans and Pseudomonas aeruginosa . J Bacteriol 1968, 96(4):1055–1064.
PubMed Central
CAS
PubMed
Google Scholar
Forney FW, Markovetz AJ: Subterminal oxidation of aliphatic hydrocarbons. J Bacteriol 1970, 102(1):281–282.
PubMed Central
CAS
PubMed
Google Scholar
Forney F, Markovetz A: The biology of methyl ketones. J Lipid Res 1971, 12(4):383–395.
CAS
PubMed
Google Scholar
Forney F, Markovetz A, Kallio R: Bacterial oxidation of 2-tridecanone to 1-undecanol. J Bacteriol 1967, 93(2):649–655.
PubMed Central
CAS
PubMed
Google Scholar
Hornei S, Kohler M, Weide H: Spectrum of fatty acids of a Candida strain following culture on n -alkanes. Z Allg Mikrobiol 1972, 12: 19–27. 10.1002/jobm.3630120105
CAS
PubMed
Google Scholar
Ji Y, Mao G, Wang Y, Bartlam M: Structural insights into diversity and n-alkane biodegradation mechanisms of alkane hydroxylases. FMICB 2013, 4: 58. 10.3389/fmicb.2013.00058
PubMed Central
PubMed
Google Scholar
Käppeli O: Cytochromes P-450 of yeasts. Microbiol Rev 1986, 50(3):244.
PubMed Central
PubMed
Google Scholar
Kelly DR, Knowles CJ, Mahdi JG, Wright MA, Taylor IN, Hibbs DE, Hursthouse MB, Mish'al AK, Roberts SM, Wan PWH, Grogan G, Willetts AJ: Model for the functional active site of Baeyer-Villigerases. X-ray crystal data for (1S,2R,5R,8S,1[prime or minute]R)-8-endo-benzoyloxy-N-(1[prime or minute]-phenylethyl)bicyclo[3.3.0]octane-2-endo-carboxamide. J Chem Soc Perkin Trans 1995, 1(16):2057–2066. doi:10.1039/p19950002057 10.1039/p19950002057
Google Scholar
Kester A, Foster J: Diterminal oxidation of long-chain alkanes by bacteria. J Bacteriol 1963, 85(4):859–869.
PubMed Central
CAS
PubMed
Google Scholar
Kirschner A, Altenbuchner J, Bornscheuer UT: Cloning, expression, and characterization of a Baeyer-Villiger monooxygenase from Pseudomonas fluorescens DSM 50106 in E. coli . Appl Microbiol Biotechnol 2007, 73(5):1065–1072. 10.1007/s00253-006-0556-6
CAS
PubMed
Google Scholar
Klug MJ (1969) The Metabolism of n-alkanes and l-alkenes by Members of the Genus Candida, Dissertation. University of Iowa
Klug MJ, Markovetz AJ: Degradation of hydrocarbons by members of the genus Candida. II. Oxidation of n-alkanes and l-alkenes by Candida lipolytica. J Bacteriol 1967, 93(6):1847–1852.
PubMed Central
CAS
PubMed
Google Scholar
Klug MJ, Markovetz AJ: Degradation of hydrocarbons by members of the genus Candida 3. Oxidative intermediates from 1-hexadecene and 1-heptadecene by Candida lipolytica . J Bacteriol 1968, 96(4):1115–1123.
PubMed Central
CAS
PubMed
Google Scholar
Komagata K, Nakase T, Katsuya N: Assimilation of hydrocarbons by yeasts. J Gen Appl Microbiol 1964, 10(4):323–331. 10.2323/jgam.10.323
Google Scholar
Kotani T, Yurimoto H, Kato N, Sakai Y: Novel acetone metabolism in a propane-utilizing bacterium, Gordonia sp. strain TY-5. J Bacteriol 2007, 189(3):886–893. 10.1128/JB.01054-06
PubMed Central
CAS
PubMed
Google Scholar
Krauel H, Kunze R, Weide H: Bildung von Dicarbonsäuren durch Candida guilliermondii , Stamm H 17, aus n -Alkanen. Z Allg Mikrobiol 1973, 13(1):55–58. 10.1002/jobm.3630130105
CAS
PubMed
Google Scholar
Leipold F, Wardenga R, Bornscheuer UT: Cloning, expression and characterization of a eukaryotic cycloalkanone monooxygenase from Cylindrocarpon radicicola ATCC 11011. Appl Microbiol Biotechnol 2012, 94(3):705–717. 10.1007/s00253-011-3670-z
CAS
PubMed
Google Scholar
Leisch H, Morley K, Lau PC: Baeyer-Villiger monooxygenases: more than just green chemistry. Chem Rev 2011, 111(7):4165–4222. 10.1021/cr1003437
CAS
PubMed
Google Scholar
Lottmann J, Hammer E, Schauer F: Methyl ketone formation during degradation of phenoxybutyric acid by Penicillium canescens SBUG-M 1139. Arch Microbiol 1999, 172(6):417–420. 10.1007/s002030050779
CAS
PubMed
Google Scholar
Mauersberger S, Ohkuma M, Schunck W-H, Takagi M (1996) Candida maltosa Nonconventional Yeasts in Biotechnology. Springer, Berlin Heidelberg, pp 411-580
Mihovilovic MD, Kapitán P: Regiodivergent Baeyer-Villiger oxidation of fused ketone substrates by recombinant whole-cells expressing two monooxygenases from Brevibacterium . Tetrahedron Lett 2004, 45(13):2751–2754. doi:http://dx.doi.org/10.1016/j.tetlet.2004.02.036 10.1016/j.tetlet.2004.02.036
CAS
Google Scholar
Mizuno M, Shimojima Y, Iguchi T, Takeda I, Senoh S: Fatty acid composition of hydrocarbon-assimilating yeast. Agric Biol Chem 1966, 30(5):506–510. 10.1271/bbb1961.30.506
CAS
Google Scholar
Patil R, Banoth L, Singh A, Chisti Y, Banerjee UC: Enantioselective bioreduction of cyclic alkanones by whole cells of Candida Species. Biocatal Biotransform 2013, 31(3):123–131. 10.3109/10242422.2013.778252
CAS
Google Scholar
Picataggio S, Rohrer T, Deanda K, Lanning D, Reynolds R, Mielenz J, Eirich LD: Metabolic engineering of Candida tropicalis for the production of long-chain dicarboxylic acids. Nat Biotechnol 1992, 10(8):894–898. 10.1038/nbt0892-894
CAS
Google Scholar
Primrose S: Ethylene and agriculture: the role of the microbe. J Appl Microbiol 1979, 46(1):1–25.
CAS
Google Scholar
Rahim M, Sih CJ: Mechanisms of steroid oxidation by microorganisms XI. Enzymatic cleavage of the pregnane side chain. J Biol Chem 1966, 241(15):3615–3623.
CAS
Google Scholar
Rasmussen RA: Isoprene: identified as a forest-type emission to the atmosphere. Environ Sci Technol 1970, 4(8):667–671. 10.1021/es60043a008
Google Scholar
Rehdorf J, Mihovilovic MD, Bornscheuer UT: Exploiting the regioselectivity of Baeyer-Villiger monooxygenases for the formation of β-amino acids and β-amino alcohols. Angew Chem Int Ed 2010, 49(26):4506–4508. 10.1002/anie.201000511
CAS
Google Scholar
Rehm H, Reiff I: Mechanisms and Occurrence of Microbial Oxidation of Long-Chain Alkanes. Springer Berlin, Heidelberg; 1981.
Google Scholar
Schauer F (1988) Zur Physiologie des Kohlenwasserstoffabbaus in Candida maltosa. Habilitation, Greifswald
Schauer F: Abbau und Verwertung von Mineralölbestandteilen durch Mikroorganismen. Bodden 2001, 11: 3–31.
Google Scholar
Scheller U, Zimmer T, Becher D, Schauer F, Schunck W-H: Oxygenation cascade in conversion of n -alkanes to α, ω-dioic acids catalyzed by cytochrome P450 52A3. J Biolog Chem 1998, 273(49):32528–32534. 10.1074/jbc.273.49.32528
CAS
Google Scholar
Schunck W-H, Mauersberger S, Huth J, Riege P, Müller H-G: Function and regulation of cytochrome P-450 in alkane-assimilating yeast. Arch Microbiol 1987, 147(3):240–244. 10.1007/BF00463482
CAS
Google Scholar
Smit MS, Mokgoro MM, Setati E, Nicaud J-M: α, ω-Dicarboxylic acid accumulation by acyl-CoA oxidase deficient mutants of Yarrowia lipolytica . Biotechnol Lett 2005, 27(12):859–864. 10.1007/s10529-005-6719-1
CAS
PubMed
Google Scholar
Song JW, Jeon EY, Song DH, Jang HY, Bornscheuer UT, Oh DK, Park JB: Multistep enzymatic synthesis of long-chain α, ω-dicarboxylic and ω-hydroxycarboxylic acids from renewable fatty acids and plant oils. Angew Chem Int Ed 2013, 52(9):2534–2537. 10.1002/anie.201209187
CAS
Google Scholar
Stanier R: Simultaneous adaptation: a new technique for the study of metabolic pathways. J Bacteriol 1947, 54(3):339–348.
PubMed Central
CAS
PubMed
Google Scholar
Stewart JE, Finnerty WR, Kallio R, Stevenson D: Esters from bacterial oxidation of olefins. Science 1960, 132(3435):1254–1254. 10.1126/science.132.3435.1254
CAS
PubMed
Google Scholar
Tehlivets O, Scheuringer K, Kohlwein SD: Fatty acid synthesis and elongation in yeast. Biochim Biophys Acta - Mol Cell Biol L 2007, 1771(3):255–270. 10.1016/j.bbalip.2006.07.004
CAS
Google Scholar
Terasawa M, Takahashi J: Mode of metabolism of 1-tetradecene by Candida yeasts and citrates production. Agric Biol Chem 1981, 45(11):2433–2441. 10.1271/bbb1961.45.2433
CAS
Google Scholar
Van der Walt J, van Kerken AE: The wine yeast of the cape. Antonie Van Leeuwenhoek 1961, 27(1):81–90. 10.1007/BF02538426
CAS
PubMed
Google Scholar
Watkinson RJ, Morgan P: Physiology of Aliphatic Hydrocarbon-Degrading Microorganisms, Physiology of Biodegradative Microorganisms. Springer, Heidelberg; 1991.
Google Scholar
Wolfson A, Dlugy C, Tavor D: Baker's yeast catalyzed asymmetric reduction of prochiral ketones in different reaction mediums. Org Commun 2013, 6(1):1–11.
CAS
Google Scholar