Bailey MJ, Biely P, Poutanen K: Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 1992, 23: 257–270. doi:10.1016/0168–1656(92)90074-J 10.1016/0168-1656(92)90074-J
Article
CAS
Google Scholar
Beaugrand J, Chambat G, Wong V, Goubet F, Rémond C, Paës G, Benamrouche S, Debeire P, O'Donohue M, Chabbert B: Impact and efficiency of GH10 and GH11 thermostable endoxylanases on wheat bran and alkali-extractable arabinoxylans. Carbohydr Res 2004, 339: 2529–2540. doi:10.1016/j.carres.2004.08.012 10.1016/j.carres.2004.08.012
Article
CAS
PubMed
Google Scholar
Carpita NC, Gibeaut DM: Structural models of primary-cell walls in flowering plants - consistency of molecular-structure with the physical-properties of the walls during growth. Plant J 1993, 3: 1–30. doi:10.1111/j.1365–313X.1993.tb00007.x 10.1111/j.1365-313X.1993.tb00007.x
Article
CAS
PubMed
Google Scholar
Collins T, Gerday C, Feller G: Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 2005, 29: 3–23. doi:10.1016/j.femsre.2004.06.005 10.1016/j.femsre.2004.06.005
Article
CAS
PubMed
Google Scholar
Coughlan MP, Hazlewood GP: Beta-1,4-D-xylan-degrading enzyme-systems - biochemistry, molecular-biology and applications. Biotechnol Appl Biochem 1993, 17: 259–289. doi:10.1111/j.1470–8744.1993.tb00244.x
CAS
PubMed
Google Scholar
Coutinho PM, Henrissat B: Carbohydrate-active enzymes: an integrated database approach. Roy Soc Ch 1999, 246: 3–12.
CAS
Google Scholar
Deutschmann R, Dekker RF: From plant biomass to bio-based chemicals: latest developments in xylan research. Biotechnol Adv 2012, 30: 1627–1640. doi:10.1016/j.biotechadv.2012.07.001 10.1016/j.biotechadv.2012.07.001
Article
CAS
PubMed
Google Scholar
Dimarogona M, Topakas E, Christakopoulos P, Chrysina ED: The structure of a GH10 xylanase from Fusarium oxysporum reveals the presence of an extended loop on top of the catalytic cleft. Acta Crystallogr D 2012, 68: 735–742. doi:10.1107/S0907444912007044 10.1107/S0907444912007044
Article
CAS
PubMed
Google Scholar
Fang X, Yano S, Inoue H, Sawayama S: Strain improvement of Acremonium cellulolyticus for cellulase production by mutation. J Biosci Bioeng 2009, 107: 256–261. doi:10.1016/j.jbiosc.2008.11.022 10.1016/j.jbiosc.2008.11.022
Article
CAS
PubMed
Google Scholar
Fujii T, Fang X, Inoue H, Murakami K, Sawayama S: Enzymatic hydrolyzing performance of Acremonium cellulolyticus and Trichoderma reesei against three lignocellulosic materials. Biotechnol Biofuels 2009, 2: 24. doi:10.1186/1754–6834–2-24 10.1186/1754-6834-2-24
Article
PubMed Central
PubMed
Google Scholar
Fujii T, Murakami K, Sawayama S: Cellulase hyperproducing mutants derived from the fungus Trichoderma reesei QM9414 produced large amounts of cellulase at the enzymatic and transcriptional levels. Biosci Biotechnol Biochem 2010, 74: 419–422. [http://dx.doi.org/10.1271/bbb.90655] http://dx.doi.org/10.1271/bbb.90655 10.1271/bbb.90655
Article
CAS
PubMed
Google Scholar
Fujii T, Iwata K, Murakami K, Yano S, Sawayama S: Isolation of uracil auxotrophs of the fungus Acremonium cellulolyticus and the development of a transformation system with the pyrF gene. Biosci Biotechnol Biochem 2012, 76: 245–249. [http://dx.doi.org/10.1271/bbb.110498] http://dx.doi.org/10.1271/bbb.110498 10.1271/bbb.110498
Article
CAS
PubMed
Google Scholar
Hachmann JP, Amshey JW: Models of protein modification in Tris-glycine and neutral pH Bis-Tris gels during electrophoresis: effect of gel pH. Anal Biochem 2005, 342: 237–245. [http://dx.doi.org/10.1016/j.ab.2005.04.015] http://dx.doi.org/10.1016/j.ab.2005.04.015 10.1016/j.ab.2005.04.015
Article
CAS
PubMed
Google Scholar
Harris GW, Jenkins JA, Connerton I, Cummings N, Loleggio L, Scott M, Hazlewood GP, Laurie JI, Gilbert HJ, Pickersgill RW: Structure of the catalytic core of the family F xylanase from Pseudomonas fluorescens and identification of the xylopentaose-binding sites. Structure 1994, 2: 1107–1116. 10.1016/S0969-2126(94)00112-X
Article
CAS
PubMed
Google Scholar
Inoue H, Fujii T, Yoshimi M, Taylor LE 2nd, Decker SR, Kishishita S, Nakabayashi M, Ishikawa K: Construction of a starch-inducible homologous expression system to produce cellulolytic enzymes from Acremonium cellulolyticus . J Ind Microbiol Biotechnol 2013, 40: 823–830. doi:10.1007/s10295–013–1286–2 10.1007/s10295-013-1286-2
Article
CAS
PubMed
Google Scholar
Kumar R, Singh S, Singh OV: Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 2008, 35: 377–391. doi:10.1007/s10295–008–0327–8 10.1007/s10295-008-0327-8
Article
CAS
PubMed
Google Scholar
Lee JW, JY P k, Kwon M, Choi IG: Purification and characterization of a thermostable xylanase from the brown-rot fungus Laetiporus sulphureus . J Biosci Bioeng 2009, 107: 33–37. doi:10.1016/j.jbiosc.2008.09.006 10.1016/j.jbiosc.2008.09.006
Article
CAS
PubMed
Google Scholar
Lo Leggio L, Kalogiannis S, Bhat MK, Pickersgill RW: High resolution structure and sequence of T. aurantiacus xylanase I: implications for the evolution of thermostability in family 10 xylanases and enzymes with (beta)alpha-barrel architecture. Proteins 1999, 36: 295–306. doi:10.1002/(SICI)1097–0134(19990815)36:3 10.1002/(SICI)1097-0134(19990815)36:3<295::AID-PROT4>3.0.CO;2-6
Article
CAS
PubMed
Google Scholar
Lo MC, Aulabaugh A, Jin GX, Cowling R, Bard J, Malamas M, Ellestad G: Evaluation of fluorescence-based thermal shift assays for hit identification in drug discovery. Anal Biochem 2004, 332: 153–159. [http://dx.doi.org/10.1016/j.ab.2004.04.031] http://dx.doi.org/10.1016/j.ab.2004.04.031 10.1016/j.ab.2004.04.031
Article
CAS
PubMed
Google Scholar
McIlvaine TC: A buffer solution for colorimetric comparison. J Biol Chem 1921, 49: 183–186.
CAS
Google Scholar
Mitsuishi Y, Yamanobe T, Yagisawa M, Takasaki Y: Purification and properties of thermostable xylanases from mesophilic fungus strain Y-94. Agric Biol Chem 1987, 51: 3207–3213. [http://dx.doi.org/10.1271/bbb1961.51.3207] http://dx.doi.org/10.1271/bbb1961.51.3207 10.1271/bbb1961.51.3207
Article
CAS
Google Scholar
Niesen FH, Berglund H, Vedadi M: The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat Protoc 2007, 2: 2212–2221. doi:10.1038/nprot.2007.321 10.1038/nprot.2007.321
Article
CAS
PubMed
Google Scholar
Paës G, Berrin JG, Beaugrand J: GH11 xylanases: Structure/function/properties relationships and applications. Biotechnol Adv 2012, 30: 564–592. doi:10.1016/j.biotechadv.2011.10.003 10.1016/j.biotechadv.2011.10.003
Article
PubMed
Google Scholar
Polizeli ML, Rizzatti AC, Monti R, Terenzi HF, Jorge JA, Amorim DS: Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 2005, 67: 577–591. doi:10.1007/s00253–005–1904–7 10.1007/s00253-005-1904-7
Article
CAS
PubMed
Google Scholar
Prade RA: Xylanases: from biology to biotechnology. Biotechnol Genet Eng Rev 1996, 13: 101–131. 10.1080/02648725.1996.10647925
Article
CAS
PubMed
Google Scholar
Senisterra GA, Finerty PJ Jr: High throughput methods of assessing protein stability and aggregation. Mol Biosyst 2009, 5: 217–223. doi:10.1039/b814377c 10.1039/b814377c
Article
CAS
PubMed
Google Scholar
Shibuya T, Watanabe Y, Nalley KA, Fusco A, Salafsky B: The BCA protein determination system. An analysis of several buffers, incubation temperature and protein standards. Tokyo Ika Daigaku Zasshi 1989, 47: 677–682.
CAS
Google Scholar
Sidhu G, Withers SG, Nguyen NT, McIntosh LP, Ziser L, Brayer GD: Sugar ring distortion in the glycosyl-enzyme intermediate of a family G/11 xylanase. Biochemistry 1999, 38: 5346–5354. doi:10.1021/bi982946f 10.1021/bi982946f
Article
CAS
PubMed
Google Scholar
Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC: Measurement of protein using bicinchoninic acid. Anal Biochem 1985, 150: 76–85. [http://dx.doi.org/10.1016/0003–2697(85)90442–7] http://dx.doi.org/10.1016/0003–2697(85)90442–7 10.1016/0003-2697(85)90442-7
Article
CAS
PubMed
Google Scholar
Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 1994, 22: 4673–4680. doi:10.1093/nar/22.22.4673 10.1093/nar/22.22.4673
Article
PubMed Central
CAS
PubMed
Google Scholar
van den Brink J, de Vries RP: Fungal enzyme sets for plant polysaccharide degradation. Appl Microbiol Biotechnol 2011, 91: 1477–1492. doi:10.1007/s00253–011–3473–2 10.1007/s00253-011-3473-2
Article
PubMed Central
PubMed
Google Scholar
Yamanobe T, Mitsuishi Y, Takasaki Y: Isolation of a cellulolytic enzyme producing microorganism, culture conditions and some properties of the enzymes. Agric Biol Chem 1987, 51: 65–74. 10.1271/bbb1961.51.65
Article
CAS
Google Scholar
York WS, O’Neill MA: Biochemical control of xylan biosynthesis – which end is up? Curr Opin Plant Biol 2008, 11: 258–265. doi:10.1016/j.pbi.2008.02.007 10.1016/j.pbi.2008.02.007
Article
CAS
PubMed
Google Scholar
Zou G, Shi S, Jiang Y, van den Brink J, de Vries RP, Chen L, Zhang J, Ma L, Wang C, Zhou Z: Construction of a cellulase hyper-expression system in Trichoderma reesei by promoter and enzyme engineering. Microb Cell Fact 2012, 11: 21. doi:10.1186/1475–2859–11–21 10.1186/1475-2859-11-21
Article
PubMed Central
CAS
PubMed
Google Scholar