Atsumi S, Hanai T, Liao JC: Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 2008, 451: 86–89. 10.1038/nature06450
Article
CAS
PubMed
Google Scholar
Buschke N, Schäfer R, Becker J, Wittmann C: Metabolic engineering of industrial platform microorganisms for biorefinery applications–optimization of substrate spectrum and process robustness by rational and evolutive strategies. Bioresour Technol 2013a, 135: 544–554.
Article
CAS
Google Scholar
Buschke N, Becker J, Schäfer R, Kiefer P, Biedendieck R, Wittmann C: Systems metabolic engineering of xylose-utilizing Corynebacterium glutamicum for production of 1,5-diaminopentane. Biotechnol J 2013b, 8: 557–570. 10.1002/biot.201200367
Article
CAS
Google Scholar
Ha SJ, Galazka JM, Kim SR, Choi JH, Yang X, Seo JH, Glass NL, Cate JH, Jin YS: Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc Natl Acad Sci U S A 2011, 108: 504–509. 10.1073/pnas.1010456108
Article
CAS
PubMed Central
PubMed
Google Scholar
Hall BG, Betts PW: Cryptic genes for cellobiose utilization in natural isolates of Escherichia coli . Genetics 1987, 115: 431–439.
CAS
PubMed Central
PubMed
Google Scholar
Keyhani NO, Roseman S: Wild-type Escherichia coli grows on the chitin disaccharide, N, N = -diacetylchitobiose, by expressing the cel operon. Proc Natl Acad Sci 1997, 94: 14367–14371. 10.1073/pnas.94.26.14367
Article
CAS
PubMed Central
PubMed
Google Scholar
Kind S, Jeong WK, der Schro H, Wittmann C: Systems-wide metabolic pathway engineering in Corynebacterium glutamicum for bio-based production of diaminopentane. Metab Eng 2010, 12: 341–351. 10.1016/j.ymben.2010.03.005
Article
CAS
PubMed
Google Scholar
Kind S, Kreye S, Wittmann C: Metabolic engineering of cellular transport for overproduction of the platform chemical 1,5-diaminopentane in Corynebacterium glutamicum . Metab Eng 2011, 13: 217–617.
Article
Google Scholar
Lee SY, Chang HN: High cell density cultivation of Escherichia coli W using sucrose as a carbon source. Biotechnol Lett 1993, 15: 971–974. 10.1007/BF00131766
Article
CAS
Google Scholar
Lee SY, Choi JH, Xu Z: Microbial cell-surface display. Trends Biotechnol 2003,21(1):45–52. 10.1016/S0167-7799(02)00006-9
Article
CAS
PubMed
Google Scholar
Lee KH, Park JH, Kim TY, Kim HU, Lee SY: Systems metabolic engineering of Escherichia coli for L-threonine production. Mol Syst Biol 2007, 3: 149.
Article
CAS
PubMed Central
PubMed
Google Scholar
Mimitsuka T, Sawai H, Hatsu M, Yamada K: Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation. Biosci Biotechnol Biochem 2007, 71: 2130–2135. 10.1271/bbb.60699
Article
CAS
PubMed
Google Scholar
Moniruzzaman M, Lai XK, York SW, Ingram LO: Isolation and molecular characterization of high-performance cellobiose-fermenting spontaneous mutants of ethanologenic Escherichia coli KO11 containing the Klebsiella oxytoca casAB operon. Appl Environ Microbiol 1997, 63: 4633–4637.
CAS
PubMed Central
PubMed
Google Scholar
Na D, Yoo SM, Chung H, Park H, Park JH, Lee SY: Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nat Biotechnol 2013,31(2):170–174. 10.1038/nbt.2461
Article
CAS
PubMed
Google Scholar
Narita J, Okano K, Tateno T, Tanino T, Sewaki T, Sung MH, Fukuda H, Kondo A: Display of active enzymes on the cell surface of Escherichia coli using PgsA anchor protein and their application to bioconversion. Appl Microbiol Biotechnol 2006,70(5):564–572. 10.1007/s00253-005-0111-x
Article
CAS
PubMed
Google Scholar
Park JH, Lee KH, Kim TY, Lee SY: Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. Proc Natl Acad Sci 2007, 104: 7797–7802. 10.1073/pnas.0702609104
Article
CAS
PubMed Central
PubMed
Google Scholar
Park JH, Lee SY, Kim TY, Kim HU: Application of systems biology for bioprocess development. Trends Biotechnol 2008, 26: 404–412. 10.1016/j.tibtech.2008.05.001
Article
CAS
PubMed
Google Scholar
Parker LL, Hall BG: Mechanisms of activation of the cryptic cel operon of Escherichia coli K12. Genetics 1990, 124: 473–482.
CAS
PubMed Central
PubMed
Google Scholar
Qian ZG, Xia XX, Lee SY: Metabolic engineering of Escherichia coli for the production of putrescine: A four carbon diamine. Biotechnol Bioeng 2009, 104: 651–662.
CAS
PubMed
Google Scholar
Qian ZG, Xia XX, Lee SY: Metabolic engineering of Escherichia coli for the production of cadaverine: a five carbon diamine. Biotechnol Bioeng 2011,108(1):93–103. 10.1002/bit.22918
Article
CAS
PubMed
Google Scholar
Sánchez OJ, Cardona CA: Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 2008,99(13):5270–5295. 10.1016/j.biortech.2007.11.013
Article
PubMed
Google Scholar
Soksawatmaekhin W, Kuraishi A, Sakata K, Kashiwagi K, Igarashi K: Excretion and uptake of cadaverine by CadB and its physiological functions in Escherichia coli . Mol Microbiol 2004, 51: 1401–1412. 10.1046/j.1365-2958.2003.03913.x
Article
CAS
PubMed
Google Scholar
Soma Y, Inokuma K, Tanaka T, Ogino C, Kondo A, Okamoto M, Hanai T: Direct isopropanol production from cellobiose by engineered Escherichia coli using a synthetic pathway and a cell surface display system. J Biosci Bioeng 2012, 114: 80–85. 10.1016/j.jbiosc.2012.02.019
Article
CAS
PubMed
Google Scholar
Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, Del Cardayre SB, Keasling JD: Microbial production of fatty-acid- derived fuels and chemicals from plant biomass. Nature 2010, 463: 559–562. 10.1038/nature08721
Article
CAS
PubMed
Google Scholar
Tanaka T, Kawabata H, Ogino C, Kondo A: Creation of a cellooligosaccharide-assimilating Escherichia coli strain by displaying active β-glucosidase on the cell surface via a novel anchor protein. Appl Environ Microbiol 2011,77(17):6265–6270. 10.1128/AEM.00459-11
Article
CAS
PubMed Central
PubMed
Google Scholar
Tateno T, Okada Y, Tsuchidate T, Tanaka T, Fukuda H, Kondo A: Direct production of cadaverine from soluble starch using Corynebacterium glutamicum coexpressing α-amylase and lysine decarboxylase. Appl Microbiol Biotechnol 2009,82(1):115–121. 10.1007/s00253-008-1751-4
Article
CAS
PubMed
Google Scholar
Tyo KE, Ajikumar PK, Stephanopoulos G: Stabilized gene duplication enables long-term selection-free heterologous pathway expression. Nat Biotechnol 2009, 27: 760–765. 10.1038/nbt.1555
Article
CAS
PubMed
Google Scholar
Xin Z, Yinbo Q, Peiji G: Acceleration of ethanol-production from paper-mill waste fiber by supplementation with β-glucosidase. Enzyme Microb Technol 1993, 15: 62–65. 10.1016/0141-0229(93)90117-K
Article
Google Scholar