Alvarado G, Posada HE, Cortina HA: Nueva variedad de café con resistencia a la roya. Avance técnico Cenicafé 2005, 337: 1–8.
Google Scholar
Arlorio M, Ludwig A, Boller T, Bonfante P: Inhibition of fungal growth by plant chitinases and β-1, 3-glucanases. Protoplasma 1992, 171: 34–43. doi:10.1007/BF01379278 10.1007/BF01379278
Article
CAS
Google Scholar
Barbehenn RV, Constabel CP: Tannins in plant-herbivore interactions. Phytochemistry 2011, 72: 1551–1565. doi:10.1016/j.phytochem.2011.01.040 10.1016/j.phytochem.2011.01.040
Article
CAS
PubMed
Google Scholar
Barbosa A, Albuquerque E, Silva M, Souza D, Oliviera-Neto O, Valencia A, Rocha T, Grossi-De-Sa MF: α-Amylase inhibitor-1 gene from Phaseolus vulgaris expressed in Coffea arabica plants inhibits α-amylases from the coffee berry borer pest. BMC Biotechnol 2011, 10: 44. doi:10.1186/1472–6750–10–44
Article
Google Scholar
Benavides P, Gongora C, Bustillo A: IPM program to control coffee berry borer Hypothenemus hampei , with emphasis on highly pathogenic mixed strains of Beauveria bassiana , to overcome insecticide resistance in Colombia. In Insecticides advances in Integrated Pest Management. Edited by: Perveen F. InTech, Rijeka; 2012:511–540.
Google Scholar
Bolar JP, Norelli JL, Harman GE, Brown SK, Aldwinckle HS: Synergistic activity of endochitinase and exochitinase from Trichoderma atroviride ( T. harzianum ) against the pathogenic fungus Venturia inaequalis in transgenic apple plants. Transgen Res 2001, 10: 533–543. 10.1023/A:1013036732691
Article
CAS
Google Scholar
Broadway RM, Harman GE: United Stated Patent.2000. [http://www.freepatentsonline.com/6069299.pdf]
Google Scholar
Broadway RM, Williams DL, Kain WC, Harman GE, Lorito M, Labeda DP: Partial characterization of chitinolytic enzymes from Streptomyces albidoflavus . Lett Appl Microbiol 1995, 20: 271–276. doi:10.1111/j.1472–765X.1995.tb00444.x 10.1111/j.1472-765X.1995.tb00444.x
Article
CAS
PubMed
Google Scholar
Broadway RM, Góngora C, Kain WC, Sanderson JP, Monroy JA, Bennet KC, Warner JB, Hoffman MP: Novel chitinolytic enzymes with biological activity herbivorous insects. J Chem Ecol 1998, 24: 985–998. doi:10.1023/a:1022346301626 10.1023/A:1022346301626
Article
CAS
Google Scholar
Brydon L, Gooday GW, Chappell LH, King TP: Chitin in egg shells of Onchocerca gibsoni and Onchocerca volvulus . Mol Biochem Parasitol 1989, 25: 267–272. doi:10.1016/0166–6851(87)90090–9
Article
Google Scholar
Bustillo P: El manejo de cafetales y su relación con el control de la broca del café en Colombia. Boletín Técnico Cenicafé 2002, 24: 1–40.
Google Scholar
Castillo J, Moreno LG: La variedad Colombia: selección de un cultivar compuesto resistente a la roya del café. Cenicafé, Chinchiná, Caldas, Colombia; 1988.
Google Scholar
Chandrakanth E, Garcia JM, Lopata-Finch E, Pozo MJ, Uribe P, Dong-Jin K, Sunilkumar G, Cook DR, Kenerley CM, Rathore KS: Enhanced fungal resistance in transgenic cotton expressing an endochitinase gene from Trichoderma virens . Plant Biotechnol J 2003, 1: 321–336. 10.1046/j.1467-7652.2003.00029.x
Article
Google Scholar
Chen AC: Chitin metabolism. Arch Insect Biochem Physiol 1987, 6: 267–277. doi:10.1002/arch.940060405 10.1002/arch.940060405
Article
CAS
Google Scholar
Dana MM, Pintor-Toro JA, Cubero B: Transgenic tobacco plants overexpressing chitinases of fungal origin show enhanced resistance to biotic and abiotic stress agents. Plant Physiol 2006, 142: 722–730. doi:10.1104/pp. 106.086140 10.1104/pp.106.086140
Article
PubMed Central
Google Scholar
Deng S, Lorito M, Penttilä M, Harman GE: Overexpression of an endochitinase gene ( ThEn -42) in Trichoderma atroviride for increased production of antifungal enzymes and enhanced antagonist action against pathogenic fungi. Appl Biochem Biotechnol 2007, 142: 81–94. doi:10.1007/s12010–007–0012–9 10.1007/s12010-007-0012-9
Article
CAS
PubMed
Google Scholar
Ding X, Gopalakrishnan B, Jhonson LB, White FF, Wang X, Morgan TD, Kramer KJ, Muthukrishnan S: Insect resistance of transgenic tobacco expressing an insect chitinase gene. Transgen Res 1998, 7: 77–84. doi:10.1023/A:1008820507262 10.1023/A:1008820507262
Article
CAS
Google Scholar
Distefano G, La Malfa S, Vitale A, Lorito M, Deng Z, Gentile A: Defence-related gene expression in transgenic lemon plants producing an antimicrobial Trichoderma harzianum endochitinase during fungal infection. Transgen Res 2008,17(5):873–879. doi:10.1007/s11248–008–9172–9 10.1007/s11248-008-9172-9
Article
CAS
Google Scholar
Duque OH, Chaves CB, Hernández SM: Costo del manejo de la broca Hypothenemus hampei (Ferrari) en lotes comerciales del departamento de Risaralda. In Fereración Nacional de Cafeteros de Colombia. Centro Nacional de Investigaciones del café, Chinchiná, Colombia; 1997.
Google Scholar
Elango N, Correa J, Cabib E: Secretory character of yeast chitinase. J Biol Chem 1982, 257: 1398–1400.
CAS
PubMed
Google Scholar
Federacafé : El café de Colombia.2010. [http://www.federaciondecafeteros.org/static/files/El%20Caf%C3%A9%20de%20Colombia%20Contexto%20General.pdf]
Google Scholar
Gongora CE: Chitinolytic transgenes from Streptomyces albidoflavus as phytochemicals defences against herviborous insects, use in transgenic plants and effect in plant development. Dissertation. Cornell University; 1999.
Google Scholar
Góngora CE, Wang S, Barbehenn RV, Broadway RM: Chitinolytic enzymes from Streptomyces albidoflavus expressed in tomato plants: effects on Trichoplusia ni . Entomol Exp Appl 2001, 99: 193–204. doi:10.1046/j.1570–7458.2001.00817.x 10.1046/j.1570-7458.2001.00817.x
Article
Google Scholar
Gooday GW: Physiology of microbial degradation of chitin and chitosan. Biodegradation 1990, 1: 177–190. doi:10.1007/BF00058835 10.1007/BF00058835
Article
CAS
Google Scholar
Gooday GW, Zhu W-Y, O'Donnell RW: What are the roles of chitinases in the growing fungus. FEMS Microbiol Lett 1992, 100: 387–392. doi:10.1111/j.1574–6968.1992.tb14067.x
Article
CAS
Google Scholar
Govinda MB, Thirunavukkarasu N, Suryanarayanan TS, Ravishankar JP, Eddine N, Moerschbacher BM: Chininolytic enzymes from endophytic fungi. Fungal Divers 2011, 47: 43–53. doi:10.1007/s13225–010–0071-z 10.1007/s13225-010-0071-z
Article
Google Scholar
Gruber S, Vaaje-Kolstad G, Matarese F, López-Mondéjar R, Kubicek CP, Seidl-Seiboth V: Analysis of subgroup C of fungal chitinases containing chitin-binding and LysM modules in the mycoparasite Trichoderma atroviride . Glycobiology 2011, 21: 122–133. doi:10.1093/glycob/cwq142 10.1093/glycob/cwq142
Article
CAS
PubMed
Google Scholar
Guerra-Guimarães L, Silva MC, Struck C, Loureiro A, Nicole M, Rodrigues CJ, Ricardo CPP: Chitinases of Coffea arabica genotypes resistant to orange rust Hemileia vastatrix . Biol Plantarum 2009, 53: 702–706. doi:10.1007/s10535–009–0126–8 10.1007/s10535-009-0126-8
Article
Google Scholar
Hartl L, Zach S, Seidl-Seiboth : Fungal chitinases: diversity, mechanistic properties and biotechnological potential. Appl Microbiol Biotechnol 2011, 93: 533–543. doi:10.1007/s00253–011–3723–3
Article
PubMed Central
PubMed
Google Scholar
Hegedus D, Erlandson M, Gillott C, Toprak U: New insights into peritrophic matrix synthesis, architecture and function. Annu Rev Entomol 2009, 54: 285–302. doi:10.1146/annurev.ento.54.110807.090559 10.1146/annurev.ento.54.110807.090559
Article
CAS
PubMed
Google Scholar
Horn SJ, Sørbotten A, Synstad B, Sikorski P, Sørlie M, Vårum KM, Eijsink VGH: Endo/exo mechanism and processivity of family 18 chitinases produced by Serratia marcescens . FEBS J 2006, 273: 491–503. 10.1111/j.1742-4658.2005.05079.x
Article
CAS
PubMed
Google Scholar
Hughes RK, Dickerson AG: Modulation of elicitor-induced chitinase and β-1,3-Glucanase activity by hormones in Phaseolus vulgaris . Plant Cell Physiol 1991, 32: 853–861.
CAS
Google Scholar
Kramer KJ, Muthukrishnan S: Insect chitinases: molecular biology and potential use as biopesticides. Insect Biochem Mol Biol 1997, 27: 887–900. doi:10.1016/S0965–1748(97)00078–7
Article
CAS
PubMed
Google Scholar
Laemmli UK: Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 1970, 227: 680–685. 10.1038/227680a0
Article
CAS
PubMed
Google Scholar
Lawrence SD, Novak NC: Expression of poplar chitinase in tomato leads to inhibition of development in colorado potato beetle. Biotechnol Lett 2006, 28: 593–599. doi:10.1007/s10529–006–0022–7 10.1007/s10529-006-0022-7
Article
CAS
PubMed
Google Scholar
Limón MC, Benítez T: Function and regulation of fungal chitinases. In Recent research developments in genetics & breeding. Edited by: Pandalai SG. Trivandrum, India; 2002:97–119.
Google Scholar
Limón MC, Chacón MR, Mejías R, Delgado-Jarana J, Rincón AM, Codón AC, Benítez T: Increased antifungal and chitinase specific activities of Trichoderma harzianum CECT 2413 by addition of a cellulose binding domain. App Microbiol Biotechnol 2004, 64: 675–685. doi:10.1007/s00253–003–1538–6 10.1007/s00253-003-1538-6
Article
Google Scholar
Lippmann R, Kaspar S, Rutten T, Melzer M, Kumlehn J, Matros A, Mock H-P: Protein and metabolite analysis reveals permanent induction of stress defense and cell regeneration processes in a tobacco cell Suspension culture. Int J Mol Sci 2009, 10: 3012–3032. doi:10.3390/ijms10073012 10.3390/ijms10073012
Article
PubMed Central
CAS
PubMed
Google Scholar
López-Pazos SA, Cortazar JE, Ceron JA: Cry1B and Cry3A are active against Hypothenemus hampei Ferrari (Coleoptera: Scolytidae). J Invertebr Pathol 2009, 101: 242–245. doi:10.1016/j.jip. 2009.05.011 10.1016/j.jip.2009.05.011
Article
PubMed
Google Scholar
Lorito M, Harman GE, Ck H, Broadway RM, Tronsmo A, Woo SL, Di Pietro A: Chitinolytic enzymes produced by Trichoderma harzianum : antifungal activity of purified endochitinase and chitobiosidase. Phytopathology 1993, 83: 302–307. doi:10.1094/Phyto-83–302 10.1094/Phyto-83-302
Article
CAS
Google Scholar
Ma BC, Tang WL, Ma LY, Li LL, Zhang LB, Zhu SJ: The role of chitinase gene expression in the defense of harvested banana against anthracnose disease. J Am Soc Hortic Sci 2009, 134: 379–386.
Google Scholar
Maxemiuc-Naccache V, Braga MR, Dietrich SMC: Chitinase and β-1,3-glucanase changes in compatible and incompatible combinations between coffee leaf disks and coffee rust ( Hemileia vastatrix ). Rev Bras Bot 1992, 15: 145–150.
CAS
Google Scholar
Molina D, Zamora H, Blanco-Labra A: An inhibitor from Lupinus bogotensis seeds effective against aspartic proteases from Hypothenemus hampei . Phytochemistry 2010, 71: 923–929. doi:10.1016/j.phytochem.2010.03.006 10.1016/j.phytochem.2010.03.006
Article
CAS
PubMed
Google Scholar
Mora A, Earle ED: Combination of Trichoderma harzianum endochitinase and a membrane- affecting fungicide on control of Alternaria leaf spot in transgenic broccoli plants. App Microbiol Biotechnol 2001, 55: 306–310. 10.1007/s002530000496
Article
CAS
Google Scholar
Muthukrishnan S, Merzendorfer H, Arakane Y, Kramer KJ: Chitin metabolism in insects. In Insect molecular biology and biochemistry. 1st edition. Edited by: Lawrence IG. Academic, San Diego; 2011:193–225.
Google Scholar
New England Biolabs: PMAL™ Protein fusion and purification system, Introduction manual. 5.1. USA 2003. Accessed 29 November 2011 [http://130.15.90.245/methods/handbooks%20and%20manuals/NEB%20pMAL%20system.pdf]
Google Scholar
Padilla BH, Acuña JR, Velasquez CS, Rubio JD: Inhibidores de α- amilasas de la broca del cafe Hypothenemus hampei en diferentes especies de vegetales. Rev Colomb Entomol 2006, 32: 125–130.
Google Scholar
Peters W: Peritrophic membranes. Springer-Verlag, Berlin; 1992.
Chapter
Google Scholar
Portilla M: Desarrollo y evaluación de una nueva dieta artificial para criar Hypothemenus hampei . Cenicafé 1999, 50: 24–38.
Google Scholar
Schickler H, Chet I: Heterologous chitinase gene expression to improve plant defense against phytopathogenic fungi. Journal Ind Microbiol Biot 1997,19(3):196–201. doi:10.1038/sj.jim.2900447 10.1038/sj.jim.2900447
Article
CAS
Google Scholar
Schlumbaum A, Mauch F, Vogeli U, Boller T: Plant chitinases are potent inhibitors of fungal growth. Nature 1986, 324: 365–367. doi:10.1038/324365a0 10.1038/324365a0
Article
CAS
Google Scholar
Seidl V: Chitinases of filamentous fungi: a large group of diverseproteins with multiple physiological functions. Fungal Biol Rev 2008, 22: 36–42. doi:10.1016/j.fbr.2008.03.002 10.1016/j.fbr.2008.03.002
Article
Google Scholar