Skip to main content

High level expression of bikunin in Pichia pastoris by fusion of human serum albumin

Abstract

Bikunin is a proteoglycan exhibiting broad-spectrum inhibitory activity against serine proteases and could potentially suppress tumor cell invasion and metastasis. Here, we have successfully expressed recombinant human bikunin (rh-bikunin) in Pichia pastoris and also established the purification procedure. Different fusion genes of h-UTI and domain I, domain I and domain II, domain I, domain II and domain III of human serum albumin (HSA) were inserted into expression vector pPICZαA. After expressed in shake flask, rh-bikunin was produced in an 30-L fermenter and purified by affinity chromatography and cation exchange chromatography. The final expression levels were 200 mg/L and we got totally 1.08 g (3650 IU/mg) of active purified rh-bikunin (purity is 98%) from 20 L of fermentation broth. The rh-bikunin consists of unique form with molecular masses of 25 kDa, and has the same N-terminals sequence as human native bikunin. This study provided a new method for high level expression of active rh-bikunin by using HSA as fusion parter.

Introduction

Bikunin, also being called urinary trypsin inhibitor (UTI), contains two antiproteolytic Kunitz domains. The protein is a proteoglycan ([Xu, Carr et al. 1998]), which has a molecular mass of about 25 kDa including a 6-7 kDa chondroitin sulfate chain ([Pugia, Valdes Jr et al. 2007]; [Chi, Wolff et al. 2008]). Bikunin is synthesized in the liver together with another plasma protein, α1-microglobulin (α1-m), forming a precursor (α1-m/bikunin precursor, AMBP). As a kind of serine proteinase inhibitor, bikunin exhibits broad inhibitory activity against many proteases, such as trypsinase, chymotrypsin, leukocyte elastase, and fibrinolytic enzyme. Moreover, human bikunin hasn't antigenicity to human and has the characteristic of use safety, so it has been widely used as a drug for patients with acute pancreatitis, acute attack of chronic pancreatitis, acute circulation exhaustion, tumor and shock ([H Inaba 1986]; [Okuhama, Shiraishi et al. 1999]; [Kobayashi, Suzuki et al. 2003]; [Yano, Anraku et al. 2003]; [Molor-Erdene, Okajima et al. 2005]; [Qing xia 2005]; [Zhang, Liu et al. 2011]). The bikunin has many advantages such as evident effect in clinic, low side effect and low production cost. However, due to the low content in urinary, difficult collection of human urinary and high cost of purification, the bikunin is limited to apply widely. To overcome these problems, a promising alternative technique is to obtain recombinant human bikunin by gene recombination.

The bikunin have been successfully cloned and expressed in E. coli and Pichia pastoris ([Fritz 1995]; [Brinkmann, Weilke et al. 1997]; [Jian-qiu, Feng-qin et al. 2008]). However, the yield of recombinant human UTI (rh-UTI) in E. coli or P. pastoris is too low and the uniform of protein doesn't to be ensured. There hasn't been report about large scale production and animal model examination so far. Therefore, the clinic value of rh-UTI is difficult to be determined all the same.

Previous study showed that the use of human serum albumin (HAS) as N-terminal fusions can be an effective technique to express difficult proteins in mammalian cells ([Carter, Zhang et al. 2010]; [Zhang, Carter et al. 2010]). So in this study, fusion genes of h-UTI and domain I, domain I and domain II, domain I, domain II and domain III of human serum albumin were inserted into expression vector pPICZαA, respectively. Finally, all plasmids were linearized for transformation into P. pastoris strain GS115. The h-UTI was highly expressed in P. pastoris, which successfully solved the problems of the uniform and low yield of h-UTI expressed in P. pastoris.

Materials and methods

Strains, vectors and other reagents

The P. pastoris GS115, pPICZαA vector, and Zeocin antibiotic were obtained from Invitrogen (CA, USA). P. pastoris were grown in YPD medium containing 10 g/L yeast extract, 20 g/L peptone, and 20 g/L D-glucose. To prepare YPD plates, 2% agar (w/v) was added to the YPD medium. YPD-Zeocin plates (1% yeast extract, 2% peptone, 2% dextrose, 2% agar, and 0.1-0.2 mg/mL Zeocin) were used for selecting multicopy transformants. The P. pastoris cells were cultured in BMGY medium (1% yeast extract, 2% peptone, 1% glycerol, 400 μg/L biotin, and 0.1 M potassium phosphate, pH 6.0) for growth and in BMMY medium (1% yeast extract, 2% peptone, 400 μg/L biotin, 1% methanol, and 0.1 M potassium phosphate, pH 6.0) for induction. All primers were synthesized by Sangon Biotechnology Corp. (Shanghai, China). All restriction enzymes, DNA marker, synthesized genes (human BSA-UTI fusions) and protein marker were purchased from Takara (Dalian, China). The standard human UTI, trypsin purchased from Sigma-Aldrich (St. Louis, USA).

Construction of expression vector pPICZα-HSA-UTI

Construction of rh-bikunin expression vector was based on pPICZαA vector. The synthesized human serum albumin (HSA) gene containing different domains were added 6 × His tag, several Gly linkers and the recognition site of Enterokinase (EK) at the C-terminal (as shown in Figure 1). The synthesized HSA gene and UTI gene were ligated to pMD18-T vector. The recombinant plasmids pMD-HSA-UTI were digested with Xho I and Not I and then inserted into the same site of pPICZαA. The recombinant expression plasmids were designated as pPICZα-UTI, pPICZα-D1-UTI, pPICZα-D2-UTI, pPICZα-D12-UTI and pPICZα-D123-UTI, respectively.

Figure 1
figure 1

Maps of fusion genes. Plasmid pPICZαA was used as a parent vector for constructing these fusions. D1, D2 and D3 represent different domain of human serum albumin (HSA) gene. Several Gly residues designed as linker. EK represent the site of enterokinase. UTI represent the gene of urinary trypsin inhibitor.

Transformation of P. pastoris and selection of high-level expression

The five Sac I restriction endonuclease linearized recombinant expression vectors were introduced into P. pastoris GS115 by electroporation using a Micropulser (Bio-Rad, USA) according to the manual, respectively. Transformed cells were selected by growth on yeast extract peptone dextrose (YPD) agar plates containing Zeocin (0.5 mg/mL). After the multicopy transformants appeared, single clone was cultured in 5 mL BMGY medium at 28°C with shaking at 250 rpm for 24 h. The cells were then centrifuged and resuspended in 5 mL BMMY medium to induce expression for 4 days. The culture medium (0.5 mL) was sampled per day and centrifuged at 4°C, 10,000 rpm for 5 min. Cell pellet and supernatant were separated. The supernatant was tested for UTI activity and cell pellet was used for genomic DNA analysis. pPICZα A blank plasmids were also transformed as a negative control.

Optimization of fermention conditions by shake-flask mode

In order to determine the effect of pH on the expression level of rh-UTI, the BMGY media was performed at different pH values (pH 4.0, 5.0, 5.5, 6.0, 6.5, 7.0). In order to determine the effect of feeding mode on the expression level of rh-UTI, inorganic salt, peptone, yeast extracts and glycerol was used as the carbon sources in BMGY media by continuous fed-batch mode, respectively.

High-density fermentation

A stock culture of P. pastoris was grown to an A600 of 3-6 in a 5-L shake flask containing 2 L YPD. The shake flask culture was used to inoculate an 30-L fermenter (Bioengineering, AG) containing 20 L of fermentation basal salts medium FM22 supplemented with PTM1 trace salts (1.1 mL of stock solution/L) and biotin (0.4 mL of the stock solution/L). The dissolved oxygen level (DO) was set at 30% and the stirring rate was 700 rpm. The pH of the medium was maintained 6.0-6.5 by automatic addition of 5 N NH4OH and 1 M phosphoric acid and 5% antifoam as required. Temperature was maintained at 30°C. The initial cultivation terminated when all glycerol was consumed (about 14 h) at batch phase. Continuous 2% peptone and 1% yeast extract feeding were carried out for about 6 h in the subsequent fed-batch phase. To induce rh-UBI expression, 100% methanol was fed at 3 mL/h/L for 50 h. Sampling of the culture medium at the end of each phase was performed for assay of rh-bikunin activity.

Purification of rh-UBI and assay of trypsin inhibitory activity

The supernatant was collected by centrifugation, 5 M NaCl and phosphate buffer was added to a final concentration of 1 M and 50 mM, respectively. Finally, the pH value was also adjiusted to 7.4 with NaOH. Then the treated supernatant was was clarified with a 0.45 μm cellulose membrane. The supernatant was purified with chelating sepharose affinity chromatography and Q sepharose F. F. anion exchange chromatography in turn. Then after digested by enterokinase, the sample was isolated and purified by chelating sepharose affinity chromatography and SP sepharose F.F cation exchange chromatography. The purity of each step protein sample was checked by SDS-PAGE. The final rh-bikunin protein was stored at -20°C for further assay of trypsin inhibitory activity accroding to previous study ([Page, Quillien et al. 2000]; [Wang, Yan et al. 2008]).

Carbohydrate digestion and amino-terminal sequence

The amino-terminal sequence of rh-bikunin was determined automated Edman degradation method (Shanghai Sangon Biological Engineering Technology & Services CO., Ltd). N-linked glycosylation was assayeded by digestion of the protein with N-glycosidase F. Protein samples (20 μg) were boiled for 5 min in 1% (w/v) SDS and 50 mM DTT. Samples were then diluted to 0.1% SDS, 5 mM DTT, 20 mM sodium phosphate (pH 7.4), 25 mM EDTA, and 2% Triton X-100. N-glycosidase F (0.8 U) was added and samples were incubated at 37°C overnight. Deglycosylation of the protein was assessed by a shift in electrophoretic mobility on SDS-PAGE analysis.

Results

Construction of recombinant plasmids and identification of transformed colonies

Five plasimds containing of different domain of HSA gene were constructed (Figure 1). DNA sequence analysis of the five recombinant expression vectors pPICZα-HSA-UTI demonstrated that cDNA encoding human bikunin and human serum albumin (HSA) gene were correctly inserted into pPICZαA vector. The recombinant expression vectors were then linearized with Sac I and introduced into P. pastoris strain GS115. Agarose gel electrophoresis of the PCR products showed that cDNA encoding bikunin was indeed integrated into the the P. pastoris genome. However, there were no visible bands from the control sample which were transformed with pPICZαA blank plasmid.

Shake-flask expression of rh-bikunin

Three clonies containing of pPICZα-D12-UTI showed the highest expression level in shake-flask expression than other recombinant plasmids (Data not shown). The effects of pH value and carbon sources on the expression level of rh-UTI in P. pastoris/pPICZα-D12-UTI were also investigated by shake-flask fermentation. The pH value of BMGY media was adjusted to the desired value. The results showed that the expression levels of rh-bikunin were different when pH of medium varied from 4.0-7.0. When the pH value was 6.0-6.5, the expression level of rh-UBI was higher than those of other pH values. In order to determine the effect of feeding mode on the expression level of rh-UBI, inorganic salt, peptone, yeast extracts and glycerol was used as the carbon sources in BMGY media by continuous fed-batch mode, respectively. The results displayed that when the inorganic salt, peptone and yeast extracts were used as the carbon sources in BMGY media, the expression level of rh-UBI was higher than that of glycerol. Therefore, the optimal pH (6.0-6.5) and carbon sources (inorganic salt, peptone or yeast extracts) were selected as shake-flask condition and further fermentation (data not shown).

High-density fermentation and purification of the recombinant protein

Under optimal conditions (pH 6.0, 30°C, and DO set at about 30%), the highest optical density and cell wet weight were obtained after 50 h of methanol induction. The expression level was also reached to 200 mg/L. The rh-bikunin solution was purified with chelating sepharose affinity chromatography and Q sepharose F.F. anion exchange chromatography in turn. Then after digested by enterokinase, the sample was isolated and purified by chelating sepharose affinity chromatography and SP sepharose F.F cation exchange chromatography. The protein recovery of the rh-bikunin at the different purification steps were summarized in Table 1. Following these processes, we could get totally 1.08 g of purified rh-bikunin (purity is 98%) from 20 L culture medium as revealed by SDS-PAGE (Figure 2 and Table 1). Rh-bikunin was secreted in the medium after induction and a final concentration of approximately 3650 IU/mg was obtained, which was 1.46 times higher than that of native human urinary bikunin (2500 IU/mg).

Table 1 Summary of purification process of rh-UTI
Figure 2
figure 2

SDS-PAGE of the recombinant rh-UTI in different step of purification. S1, Chelating sepharose affinity chromatography; S2, Q sepharose F.F. anion exchange chromatography; S3, Chelating sepharose affinity chromatography after digested by enterokinase; SP sepharose F.F cation exchange chromatography.

Characterization of purified rh-UTI

According to SDS-PAGE analysis (Figure 2, Lanes S3 and S4), rh-UTI migrated as a single band. The molecular masses based on protein migration rates in SDS gel were 23~24 kDa. However, double band was observed in other previous study ([Falkenberg, Wester et al. 2001]; [Wang, Yan et al. 2008]). The mass of rh-UTI increased by approximately 5 kDa after treatment with N-glycosidase F (Figure 3, Lanes 3, 4 and 5). On the other hand, the N-terminal amino acid sequence of rh-UTI was also identical to the N-terminus of native human bikunin (Figure 4, Ala-Val-Leu-Pro), which demonstrating correct processing ([Kakizaki, Takahashi et al. 2007]).

Figure 3
figure 3

Deglycosylation of rh-UTI. Purified recombinant human bikuninwas treated with N-glycosidase F and examined by SDS-PAGE. Lanes 1, negative control; Lanes 2, untreated rh-UTI; Lanes 3, 4 and 5, after treatment with N-glycosidase F. For rh-UTI, the mass, calculated from the migration distance in SDS-PAGE, increased by approximately 5 kDa after treatment with N-glycosidase F (Lanes 3, 4 and 5).

Figure 4
figure 4

Amino-terminal sequence of rh-UTI. N-terminus of rh-bikunin was Ala-Val-Leu-Pro.

Discussion

The expression system of yeast P. pastoris has several advantages, including the use of the alcohol oxidase I (AOX1) gene promoter, the ability of the cells to be cultivated at high density, a simplified purification procedure for secreted heterologous proteins, and modifications of foreign proteins ([Wang, Yan et al. 2008]). So, the expression system of yeast P. pastoris was used for bikunin expression. On the other hand, several parameters such as clone selection, codon optimization, fusion partners and culture conditions play a important role in obtaining high yields of protein. So, in order to optimize the level of protein production experiment, we evaluated the role of codon optimization, fusion partners and culture conditions in obtaining high yields of bikunin.

Firstly, codon bias is an intrinsic problem in heterologous protein production and needs to be taken into account in the experimental design. So, the synthesized human serum albumin (HSA) gene was used in this study. Secondly, previous study showed that the use of human serum albumin (HAS) as N-terminal fusions can be an effective technique to express difficult proteins in mammalian cells ([Carter, Zhang et al. 2010]; [Zhang, Carter et al. 2010]). So in this study, fusion genes of h-UTI and domain I, domain I and domain II, domain I, domain II and domain III of human serum albumin were inserted into expression vector pPICZαA, respectively (As shown in Figure 1). The results showed that three clonies containing of pPICZα-D12-UTI (containing domain I and domain II) showed the highest expression level in shake-flask expression than other recombinant plasmids. Thirdly, the effects of pH value and carbon sources on the expression level of rh-UTI in P. pastoris/pPICZα-D12-UTI were also investigated by shake-flask fermentation. Rh-bikunin was secreted in the medium after induction and the final expression levels were 200 mg/L. As a result, we got totally 1.08 g (3650 IU/mg) of active purified rh-bikunin (purity is 98%) from 20 L of fermentation broth, which was 1.46 times higher than that of native human urinary bikunin (2500 IU/mg) ([Wang, Yan et al. 2008]). By combined these methods, we sucessfully expressed active rh-bikunin at the high level.

References

  1. Brinkmann T, Weilke C: Recognition of Acceptor Proteins by UDP-D-xylose Proteoglycan Core Protein beta-D-Xylosyltransferase. J Biol Chem 1997, 272: 11171–11175. 10.1074/jbc.272.17.11171

    Article  CAS  PubMed  Google Scholar 

  2. Carter J, Zhang J, Dang TL, Hasegawa H, Cheng JD, Gianan I, O'Neill JW, Wolfson M, Siu S, Qu S, Meininger D, Kim H, Delaney J, Mehlin C: Fusion partners can increase the expression of recombinant interleukins via transient transfection in 2936E cells. Protein Sci 2010, 19: 357–362. 10.1002/pro.307

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Chi L, Wolff JJ, Laremore TN: Structural Analysis of Bikunin Glycosaminoglycan. J Am Chem Soc 2008, 130: 2617–2625. 10.1021/ja0778500

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Falkenberg C, Wester L: Expression of a functional proteinase inhibitor capable of accepting xylose: bikunin. Arch Biochem Biophys 2001, 387: 99–106. 10.1006/abbi.2000.2213

    Article  CAS  PubMed  Google Scholar 

  5. Fritz H, Gebhard W, Rathindra D: Human Bikunin variants as proteinase inhibitors, and medicaments containing these. 1995.

    Google Scholar 

  6. Inaba H, Kato K, Ohzawa N, Nakayama K: Effect of urinastatin on disseminated intravascular coagulation. Nippon Yakurigaku Zasshi 1986, 88: 239–244. 10.1254/fpj.88.239

    Article  CAS  PubMed  Google Scholar 

  7. Wang JQ, Yan FQ, Wang DD, Ban L, Sun N, Li CY, Zhang T, Yan WQ: Expression and purification of active recombinant human bikunin in Pichia pastoris . Protein Expr Purif 2008, 60: 127–131. 10.1016/j.pep.2008.03.025

    Article  Google Scholar 

  8. Kakizaki I, Takahashi R, Ibori N: Diversity in the degree of sulfation and chain length of the glycosaminoglycan moiety of urinary trypsin inhibitor isomers. Biochim Biophys Acta 2007, 1770: 171–177. 10.1016/j.bbagen.2006.09.026

    Article  CAS  PubMed  Google Scholar 

  9. Kobayashi H, Suzuki M, Hirashima Y, Terao T: The protease inhibitor bikunin, a novel anti-metastatic agent. Biol Chem 2003, 384: 749–754. 10.1515/BC.2003.083

    Article  CAS  PubMed  Google Scholar 

  10. Molor-Erdene P, Okajima K, Isobe H, Uchiba M, Harada N, Okabe H: Urinary trypsin inhibitor reduces LPS-induced hypotension by suppressing tumor necrosis factor-alpha production through inhibition of Egr-1 expression. Am J Physiol Heart Circ Physiol 2005, 288: 1265–1271.

    Article  Google Scholar 

  11. Okuhama Yukihiro, Shiraishi Masayuki, Higa Takao, Tomori Hirofumi, Taira Kaoru, Mamadi Toure, Muto Yoshihiro: Protective effects of ulinastatin against ischemia-reperfusion injury. J Surg Res 1999, 82: 34–42. 10.1006/jsre.1998.5496

    Article  CAS  PubMed  Google Scholar 

  12. Page D, Quillien L: Trypsin inhibitory activity measurement. Crop Sci 2000, 40: 1482–1485. 10.2135/cropsci2000.4051482x

    Article  CAS  Google Scholar 

  13. Pugia MJ, Valdes JR, Jortani SA: Bikunin (Urinary Trypsin Inhibitor): Structure, Biological Relevance, And Measurement. Adv Clin Chem 2007, 44: 223–245.

    Article  CAS  PubMed  Google Scholar 

  14. Xia Qing, Yuan Lin, Yang Xiao-Nan, Tang Wen-Fu, Jiang Jun-Ming: Comparison of integrated Chinese and Western medicine with and without somatostatin supplement in the treatment of severe acute pancreatitis. World J Gastroenterol 2005, 11: 1073–1076.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Wang Jian-Qiu, Yan Feng-Qin, Wang Dou-Dou, Ban Lei, Sun Nan, Li Cong-Yan, Zhang Ting, Yan Wei-Qun: Expression and purification of active recombinant human bikunin in Pichia pastoris . Protein Expr Purif 2008, 60: 127–131. 10.1016/j.pep.2008.03.025

    Article  Google Scholar 

  16. Yi-bin Xu, Carr PD, Guss JM, David LO: The crystal structure of bikunin from the inter-alpha-inhibitor complex: a serine protease inhibitor with two Kunitz domains. J Mol Biol 1998, 276: 955–966. 10.1006/jmbi.1997.1582

    Article  Google Scholar 

  17. Yano , Toshiyuki , Anraku , Sakiko , Nakayama , Ryosuke , Ushijima , Kazuo : Neuroprotective effect of urinary trypsin inhibitor against focal cerebral ischemia-reperfusion injury in rats. Anesthesiology 2003, 98: 465–473. 10.1097/00000542-200302000-00028

    Article  CAS  PubMed  Google Scholar 

  18. Zhang J, Carter J, Siu S, O'Neill JW, Gates AH, Delaney J, Mehlin C: Fusion partners as a tool for the expression of difficult proteins in mammalian cells. Curr Pharm Biotechnol 2010, 11: 241–245. 10.2174/138920110791111898

    Article  CAS  PubMed  Google Scholar 

  19. Zhang XY, Liu FQ, Liu HY, Cheng HX, Wang W, Wen Q, Wang YL: Urinary trypsin inhibitor attenuates lipopolysaccharide-induced acute lung injury by blocking the activation of p38 mitogen-activated protein kinase. J Inflamm Res 2011, 60: 569–575. 10.1007/s00011-010-0305-2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was kindly supported by the Applied & Basic Research Foundation of Chengdu City Science and Technology Bureau, Chengdu, China (No: 10GGYB331SW-023)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ original submitted files for images

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Gou, XH., Liu, YY., Chen, QL. et al. High level expression of bikunin in Pichia pastoris by fusion of human serum albumin. AMB Expr 2, 14 (2012). https://doi.org/10.1186/2191-0855-2-14

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/2191-0855-2-14

Keywords