Abed RMM, Dobretsov S, Sudesh K: Applications of cyanobacteria in biotechnology. J Appl Microbiol 2009, 106: 1–12. 10.1111/j.1365-2672.2008.03918.x
Article
CAS
PubMed
Google Scholar
Anemaet IG, Bekker M, Hellingwerf KJ: Algal photosynthesis as the primary driver for a sustainable development in energy, feed, and food production. Mar Biotechnol 2010, 12: 619–629. 10.1007/s10126-010-9311-1
Article
CAS
PubMed Central
PubMed
Google Scholar
Carey JS, Laffan D, Thomsonc C, Williamsd MT: Analysis of the reactions used for the preparation of drug candidate molecules. Org Biomol Chem 2006, 4: 2337–2347. 10.1039/b602413k
Article
CAS
PubMed
Google Scholar
Dubey SK, Dubey J, Mehra S, Tiwari P, Bishwas AJ: Potential use of cyanobacteria species in bioremediation of industrial effluents. African J Biotechnol 2011, 10: 1125–1132.
Google Scholar
Forsee WT, Kahn JS: Carbon dioxide fixation by isolated chloroplasts of Egulena gracilis . II. Inhibition of CO
2
fixation by AMP. Arch Biochem Biophys 1972, 150: 302–309. 10.1016/0003-9861(72)90039-2
Article
CAS
PubMed
Google Scholar
Fujita Y, Murakami A, Ohki K: Regulation of photosystem composition in the cyanobacterial photosynthetic system: the regulation occurs in response to the redox state of the electron pool located between the two photosystems. Plant Cell Physiol 1987, 28: 283–292.
CAS
Google Scholar
Goldberg K, Schroer K, Lutz S, Liese A: Biocatalytic ketone reduction -- a powerful tool for the production of chiral alcohols -- part 1: processes with isolated enzymes. Appl Microbial Biotechnol 2007, 76: 237–248. 10.1007/s00253-007-1002-0
Article
CAS
Google Scholar
Goldberg K, Schroer K, Lutz S, Liese A: Biocatalytic ketone reduction -- a powerful tool for the production of chiral alcohols -- part 2: whole-cell reductions. Appl Microbial Biotechnol 2007, 76: 249–255. 10.1007/s00253-007-1005-x
Article
CAS
Google Scholar
Havel J, Weuster-Botz D: Cofactor regeneration in phototrophic cyanobacteria applied for asymmetric reduction of ketones. Appl Microbiol Biotechnol 2007, 75: 1031–1037. 10.1007/s00253-007-0910-3
Article
CAS
PubMed
Google Scholar
Hölsch K, Havel J, Haslbeck M, Weuster-Botz D: Identification, cloning and characterization of a novel ketoreductase from the cyanobacterium Synechococcus sp. strain PCC 7942. Appl Environ Microbiol 2008, 74: 6697–6702. 10.1128/AEM.00925-08
Article
PubMed Central
PubMed
Google Scholar
Hölsch K, Weuster-Botz D: New oxidoreductases from cyanobacteria: exploring nature's diversity. Enzyme and Microbial Technology 2010, 47: 228–235. 10.1016/j.enzmictec.2010.06.006
Article
Google Scholar
Huisman GW, Liang J, Krebber A: Practical chiral alcohol manufacture using ketoreductases. Curr Opin in Chem Biol 2010, 14: 122–129. 10.1016/j.cbpa.2009.12.003
Article
CAS
Google Scholar
Itoh K, Sakamaki H, Nakamura K, Horiuchi CA: Biocatalytic asymmetric reduction of 3-acetylisoxazoles. Tetrahedron Asymmetry 2005, 16: 1403–1408. 10.1016/j.tetasy.2005.02.024
Article
CAS
Google Scholar
Kojima H, Okada A, Takeda S, Nakamura K: Effect of carbon dioxide concentrations on asymmetric reduction of ketones with plant-cultured cells. Tetrahedron Lett 2009, 50: 7079–7081. 10.1016/j.tetlet.2009.10.002
Article
CAS
Google Scholar
Kumar A, Ergas S, Yuan X, Sahu A, Zang Q, Dewulf J, Malcata FX, Langenhove H: Enhanced CO
2
fixation and biofuel production via microalgae: recent developments and future directions. Trends in Biotechnol 2010, 28: 371–380. 10.1016/j.tibtech.2010.04.004
Article
CAS
Google Scholar
Kuramoto T, Iwamoto K, Izumi M, Kirihata M, Yoshizako F: Asymmetric reduction of ethyl 2-methyl 3-oxobutanoate by Chlorella . Biosci Biotech Biochem 1999, 63: 598–601. 10.1271/bbb.63.598
Article
CAS
Google Scholar
Kurano N, Sasaki T, Miyachi S: Carbon and dioxide and microalgae. In Advances in Chemical Conversions for Mitigating Carbon Dioxide Studies in Surface Science and Catalysis 114, Elsevier Science B V Edited by: Inui T. 1998, 55–63.
Google Scholar
Kuritz T, Wolk CP: Use of filamentous cyanobacteria for biodegradation of organic pollutants. Appl Environmental Microbiol 1995, 61: 234–238.
CAS
Google Scholar
Lam LKP, Gair IA, Jones JB: Enzymes in organic synthesis. 42. Stereoselective horse liver alcohol dehydrogenase catalyzed reductions of heterocyclic bicyclic ketones. J Org Chem 1988, 53: 1611–1615. 10.1021/jo00243a004
Article
CAS
Google Scholar
Matsuda T, Harada T, Nakajima N, Itoh T, Nakamura K: Two classes of enzymes of opposite stereochemistry in an organism: One for fluorinated and another for nonfluorinated substrates. J Org Chem 2000, 65: 157–163. 10.1021/jo991283k
Article
CAS
PubMed
Google Scholar
Matsuda T, Yamanaka R, Nakamura K: Recent progress in biocatalysis for asymmetric oxidation and reduction. Tetrahedron Asymmetry 2009, 20: 513–557. 10.1016/j.tetasy.2008.12.035
Article
CAS
Google Scholar
Matsuo K, Kawabe S, Tokuda Y, Eguchi T, Yamanaka R, Nakamura K: Asymmetric reduction of ketones with a germinated plant. Tetrahedron Asymmetry 2008, 19: 157–159. 10.1016/j.tetasy.2007.12.015
Article
CAS
Google Scholar
Moore JC, Pollard DJ, Kosjek B, Devine PN: Advances in the enzymatic reduction of ketones. Acc Chem Res 2007, 40: 1412–1419. 10.1021/ar700167a
Article
CAS
PubMed
Google Scholar
Murakami A, Fujita Y: Steady state of photosynthesis in cyanobacterial photosynthetic systems before and after regulation of electron transport composition: Overall rate of photosynthesis and PSI/PS II composition. Plant Cell Physiol 1988, 29: 305–311.
CAS
Google Scholar
Nakamura K: Future directions in photosynthetic organisms-catalyzed reaction. In Future directions in Biocatalysts, Elsevier Science B V Edited by: Matsuda T. 2007, 51–58.
Chapter
Google Scholar
Nakamura K, Matsuda T: Enzyme-catalyzed reduction reactions. In Enzyme Catalysis in Organic Synthesis, A Comprehensive Handbook. Volume 32. Edited by: Drauz K, Waldmann H. Wiley-VCH Verlag GmbH, Weinheim; 2002:991–1047.
Chapter
Google Scholar
Nakamura K, Yamanaka R: Light mediated cofactor recycling system in biocatalytic asymmetric reduction of ketones. Chem Comm 2002, 1782–1783.
Google Scholar
Nakamura K, Yamanaka R: Light-mediated regulation of asymmetric reduction of ketones by a cyanobacterium. Tetrahedron Asymmetry 2002, 23: 2529–2533.
Article
Google Scholar
Nakamura K, Yamanaka R, Matsuda T, Harada T: Recent developments in asymmetric reduction of ketones with biocatalysts. Tetrahedron Asymmetry 2003, 14: 2659–2681. 10.1016/S0957-4166(03)00526-3
Article
CAS
Google Scholar
Nakamura K, Yamanaka R, Tohi K, Hamada H: Cyanobacterium-catalyzed asymmetric reduction of ketones. Tetrahedron Lett 2000, 41: 6799–6802. 10.1016/S0040-4039(00)01132-1
Article
CAS
Google Scholar
Noma Y, Asakawa Y: Enantio- and diastereo-selectivity in the biotransformation of carveols by Euglena gracilis Z . Phytochem 1992, 31: 2009–2011. 10.1016/0031-9422(92)80350-N
Article
CAS
Google Scholar
Rippka R: Isolation and purification of cyanobacteria. In Methods Enzymol. Volume 167. Edited by: Packer L, Glazer AN. Cyanobacteria, Academic Press, San Diego; 1988:3–27.
Google Scholar
Scherer S, Almon H, Boger P: Interaction of photosynthesis, respiration and nitrogen fixation in cyanobacteria. Photosyn Res 1988, 15: 95–114. 10.1007/BF00035255
Article
CAS
PubMed
Google Scholar
Seelbach K, Riebel B, Hummel W, Kula MR, Tishkov VI, Egorov AM, Wandrey C, Kragl AU: Novel, efficient regenerating method of NADPH using a new formate dehydrogenase. Tetrahedron Lett 1996, 37: 1377–1380. 10.1016/0040-4039(96)00010-X
Article
CAS
Google Scholar
Shimoda K, Hirata T: Biotransformation of enones with biocatalysts - two enone reductases from Astasia longa . J Mol Cat B: Enzymatic 2000, 8: 255–264. 10.1016/S1381-1177(99)00076-4
Article
CAS
Google Scholar
Shimoda K, Kubota N, Hamada H, Yamane S, Hirata T: Asymmetric transformation of enones with Synechococcus sp PCC 7942. Bull Chem Soc Jpn 2004, 77: 2269–2272. 10.1246/bcsj.77.2269
Article
CAS
Google Scholar
Slabas AR, Walker DA: Inhibition of spinach phosphoribulokinase by DL-glyceraldehyde. Biochem J 1976, 153: 613–619.
CAS
PubMed Central
PubMed
Google Scholar
Takano H, Haruyama H, Nakamura N, Sode K, Burges JG, Manabe E, Hirano M, Matsunaga T: CO
2
removal by high-density culture of a marine cyanobacterium Synechococcus sp. using an improved photobioreactor employing light-diffusing optical fibers. Appl Biochem Biotech 1992, (34/35):449–458.
Google Scholar
Takeda S, Ogata Y, Kojima H, Okada A, Uranishi Y, Nakamura K: Arabidopsis thaliana: a novel biocatalyst for asymmetric reductions. Plant Biotech 2011, 28: 77–82. 10.5511/plantbiotechnology.10.0927a
Article
CAS
Google Scholar
Takemura T, Akiyama K, Umeno N, Tamai Y, Ohta H, Nakamura K: Asymmetric reduction of a ketone by knockout mutants of a cyanobacterium. J Mol Cat B:Enzymatic 2009, 60: 93–95. 10.1016/j.molcatb.2009.03.017
Article
CAS
Google Scholar
Tamoi M, Miyazaki T, Fukamizo T, Shigeoka S: The Calvin cycle in cyanobacteria is regulated by CP12 via the NAD(H)/NADP(H) ratio under light/dark conditions. The Plant J 2005, 42: 504–513. 10.1111/j.1365-313X.2005.02391.x
Article
CAS
PubMed
Google Scholar
Ugwu CU, Ogbonna JC, Tanaka H: Light/dark cyclic movement of algal culture ( Synechocyctis aquatilis ) in outdoor inclined tubular photobioreactor equipped with static mixers for efficient production of biomass. Biotechnol Lett 2005, 27: 75–78. 10.1007/s10529-004-6931-4
Article
CAS
PubMed
Google Scholar
Utsukihara T, Chai W, Kato N, Nakamura K, Horiuchi CA: Reduction of (+)- and (-)-camphorquinones by cyanobacteria. J Mol Cat B:Enzymatic 2004, 31: 19–24. 10.1016/j.molcatb.2004.06.002
Article
CAS
Google Scholar
Utsukihara T, Misumi O, Kato N, Kuroiwa T, Horiuchi CA: Reduction of various ketones by red algae. Tetrahedron Asymmetry 2006, 17: 1179–1185. 10.1016/j.tetasy.2006.04.007
Article
CAS
Google Scholar
Walker TL, Purton S, Becker DK, Collet C: Microalgae as bioreactors. Plant Cell Rep 2005, 24: 629–641. 10.1007/s00299-005-0004-6
Article
CAS
PubMed
Google Scholar
Wirtz W, Stitt M, Heldt HW: Light activation of Calvin cycle enzymes as measured in pea leaves. FEBS Lett 1982, 142: 223–226. 10.1016/0014-5793(82)80139-7
Article
CAS
Google Scholar
Wong CH, Druckhammer DG, Sweers HM: Enzymatic vs. fermentative synthesis: thermostable glucose dehydrogenase catalyzed regeneration of NAD(P)H for use in enzymatic synthesis. J Am Chem Soc 1985, 107: 4028–4031. 10.1021/ja00299a044
Article
CAS
Google Scholar
Zabochnicka-świątek M: Algae-feedstock of the future. Archivum Combustionis 2010, 30: 225–236.
Google Scholar