Ashby RD, Solaiman DKY, Foglia TA: Bacterial poly(hydroxyalkanoate) polymer production from the biodiesel co-product stream. J Polym Environ 2004, 12: 105–112.
Article
CAS
Google Scholar
Ashby RD, Solaiman DKY, Foglia TA: Synthesis of short-/medium-chain-length poly(hydroxyalkanoate) blends by mixed culture fermentation of glycerol. Biomacromolecules 2005, 6: 2106–2112. 10.1021/bm058005h
Article
CAS
PubMed
Google Scholar
Barabote RD, Saier MH: Comparative genomic analyses of the bacterial phosphotransferase system. Microbiol Mol Biol Rev 2005, 69: 608–634. 10.1128/MMBR.69.4.608-634.2005
Article
CAS
PubMed Central
PubMed
Google Scholar
Bormann EJ, Roth M: The production of polyhydroxybutyrate by Methylobacterium rhodesianum and Ralstonia eutropha in media containing glycerol and casein hydrolysates. Biotechnol Lett 1999, 21: 1059–1063. 10.1023/A:1005640712329
Article
CAS
Google Scholar
Brandl H, Gross RA, Lenz RW, Fuller RC: Pseudomonas oleovorans as a source of poly(β-hydroxyalkanoates) for potential applications as biodegradable polyesters. Appl Environ Microbiol 1988, 66: 2117–2124.
Google Scholar
Cases I, Velázquez F, de Lorenzo V: The ancestral role of the phosphoenolpyruvate-carbohydrate phosphotransferase system (PTS) as exposed by comparative genomics. Res Microbiol 2007, 158: 666–670. 10.1016/j.resmic.2007.08.002
Article
CAS
PubMed
Google Scholar
Cavalheiro JMBT, de Almeida MCMD, Grandfils C, da Fonseca MMR: Poly(3-hydroxybutyrate) production by Cupriavidus necator using waste glycerol. Process Biochem 2009, 44: 509–515. 10.1016/j.procbio.2009.01.008
Article
CAS
Google Scholar
Chee JY, Tan Y, Samian MR, Sudesh K: Isolation and characterization of a Burkholderia sp. USM (JCM15050) capable of producing polyhydroxyalkanoate (PHA) from triglycerides, fatty acids and glycerols. J Polym Environ 2010, 18: 584–592. 10.1007/s10924-010-0204-1
Article
CAS
Google Scholar
Commichau FM, Forchhammer K, Stülke J: Regulatory links between carbon and nitrogen metabolism. Curr Opin Microbiol 2006, 9: 167–172. 10.1016/j.mib.2006.01.001
Article
CAS
PubMed
Google Scholar
da Silva GP, Mack M, Contiero J: Glycerol: A promising and abundant carbon source for industrial microbiology. Biotechnol Adv 2009, 27: 30–39. 10.1016/j.biotechadv.2008.07.006
Article
PubMed
Google Scholar
Darbon E, Ito K, Huang HS, Yoshimoto T, Poncet S, Deutscher J: Glycerol transport and phophoenolpyruvate-dependent enzyme I- and HPr-catalysed phosphorylation of glycerol kinase in Thermus flavus . Microbiology 1999, 145: 3205–3212.
CAS
PubMed
Google Scholar
Deutscher J, Francke C, Postma PW: How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 2006, 70: 939–1031. 10.1128/MMBR.00024-06
Article
CAS
PubMed Central
PubMed
Google Scholar
Friedrich CG, Friedrich B, Bowien B: Formation of enzymes of autotrophic metabolism during heterotrophic growth of Alcaligenes eutrophus . J Gen Microbiol 1981, 122: 69–78.
CAS
Google Scholar
Gottschalk G, Eberhardt U, Schlegel HG: Verwertung von Fructose durch Hydrogenomonas H16 (I.). Arch Mikrobiol 1964, 48: 95–108. 10.1007/BF00406600
Article
CAS
PubMed
Google Scholar
Haywood GW, Anderson AJ, Chu L, Dawes EA: Characterization of two 3-ketothiolases possessing differing substrate specificities in the polyhydroxyalkanoate synthesizing organism Alcaligenes eutrophus . FEMS Microbiol Lett 1988, 52: 91–96. 10.1111/j.1574-6968.1988.tb02577.x
Article
CAS
Google Scholar
Haywood GW, Anderson AJ, Chu L, Dawes EA: The role of NADH- and NADPH-linked acetoacetyl-CoA reductases in the poly-3-hydroxybutyrate synthesizing organism Alcaligenes eutrophus . FEMS Microbiol Lett 1988, 52: 259–264. 10.1111/j.1574-6968.1988.tb02607.x
Article
CAS
Google Scholar
Haywood GW, Anderson AJ, Dawes EA: The importance of PHB-synthase substrate specificity in polyhydroxyalkanoate synthesis by Alcaligenes eutrophus . FEMS Microbiol Lett 1989, 57: 1–6. 10.1111/j.1574-6968.1989.tb03210.x
Article
CAS
Google Scholar
ICIS pricing: Reed Business Information Limited.
2008. [http://www.icispricing.com/]
Google Scholar
Kaddor C, Steinbüchel A: Effects of homologous phosphoenolpyruvate-carbohydrate phosphotransferase system proteins on carbohydrate uptake and poly(3-hydroxybutyrate) accumulation in Ralstonia eutropha H16. Appl Environ Microbiol 2011, 77: 3582–3590. 10.1128/AEM.00218-11
Article
CAS
PubMed Central
PubMed
Google Scholar
Kanehisa M, Goto S, Kawashima S, Nakaya A: The KEGG database at GenomeNet. Nucleic Acids Res 2002, 30: 42–46. 10.1093/nar/30.1.42
Article
CAS
PubMed Central
PubMed
Google Scholar
Kotrba P, Inui M, Yukawa H: Bacterial phosphotransferase system (PTS) in carbohydrate uptake and control of carbon metabolism. J Biosci Bioeng 2001, 92: 502–517. 10.1263/jbb.92.502
Article
CAS
PubMed
Google Scholar
Krauße D, Hunold K, Kusian B, Lenz O, Stülke J, Bowien B, Deutscher J: Essential role of the hprK gene in Ralstonia eutropha H16. J Mol Microbiol Biotechnol 2009, 17: 146–152. 10.1159/000233505
Article
PubMed
Google Scholar
Lee SY: Deciphering bioplastic production. Nat Biotechnol 2006, 24: 1227–1229. 10.1038/nbt1006-1227
Article
CAS
PubMed
Google Scholar
Mothes G, Schnorpfeil C, Ackermann JU: Production of PHB from crude glycerol. Eng Life Sci 2007, 7: 475–479. 10.1002/elsc.200620210
Article
CAS
Google Scholar
Murarka A, Dharmadi Y, Yazdani SS, Gonzalez R: Fermentative utilization of glycerol by Escherichia coli and its implications for the production of fuels and chemicals. Appl Environ Microbiol 2008, 74: 1124–1135. 10.1128/AEM.02192-07
Article
CAS
PubMed Central
PubMed
Google Scholar
Noguez R, Segura D, Moreno S, Hernandez A, Juarez K, Espín G: Enzyme INtr
, NPr and IIANtr
are involved in regulation of the poly-β-hydroxybutyrate biosynthetic genes in Azotobacter vinelandii . J Mol Microbiol Biotechnol 2008, 15: 244–254. 10.1159/000108658
Article
CAS
PubMed
Google Scholar
Pflüger K, de Lorenzo V: Evidence of in vivo cross talk between the nitrogen-related and fructose-related branches of the carbohydrate phosphotransferase system of Pseudomonas putida . J Bacteriol 2008, 190: 3374–3380. 10.1128/JB.02002-07
Article
PubMed Central
PubMed
Google Scholar
Pflüger-Grau K, Görke B: Regulatory roles of the bacterial nitrogen-related phosphotransferase system. Trends Microbiol 2010, 18: 205–214. 10.1016/j.tim.2010.02.003
Article
PubMed
Google Scholar
Pohlmann A, Fricke WF, Reinecke F, Kusian B, Liesegang H, Cramm R, Eitinger T, Ewering C, Pötter M, Schwartz E, Strittmatter A, Voß I, Gottschalk G, Steinbüchel A, Friedrich B, Bowien B: Genome sequence of the bioplastic-producing "Knallgas" bacterium Ralstonia eutropha H16. Nat Biotechnol 2006, 24: 1257–1262. 10.1038/nbt1244
Article
PubMed
Google Scholar
Pries A, Priefert H, Krüger N, Steinbüchel A: Identification and characterization of two Alcaligenes eutrophus gene loci relevant to the phenotype poly(β-hydroxybutyric acid)-leaky which exhibit homology to ptsH and ptsI of Escherichia coli . J Bacteriol 1991, 173: 5843–5853.
CAS
PubMed Central
PubMed
Google Scholar
Reizer J, Reizer A, Saier MH Jr, Jacobson GR: A proposed link between nitrogen and carbon metabolism involving protein phosphorylation in bacteria. Protein Sci 1992, 1: 722–726. 10.1002/pro.5560010604
Article
CAS
PubMed Central
PubMed
Google Scholar
Schindler J: Die Synthese von Poly-β-hydroxybuttersäure durch Hydrogenomonas H16: Die zu β-Hydroxybutyryl-Coenzym A führenden Reaktionsschritte. Arch Mikrobiol 1964, 49: 236–255. 10.1007/BF00409747
Article
CAS
PubMed
Google Scholar
Schlegel HG, Gottschalk G, Bartha V: Formation and utilization of poly-β-hydroxybutyric acid by knallgas bacteria ( Hydrogenomonas ). Nature 1961, 29: 463–465.
Article
Google Scholar
Schlegel HG, Kaltwasser H, Gottschalk G: Ein Submersverfahren zur Kultur wasserstoffoxidierender Bakterien: Wachstumsphysiologische Untersuchungen. Arch Mikrobiol 1961, 38: 209–222. 10.1007/BF00422356
Article
CAS
PubMed
Google Scholar
Schubert P, Steinbüchel A, Schlegel HG: Cloning of the Alcaligenes eutrophus genes for synthesis of poly-β-hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli . J Bacteriol 1988, 170: 5837–5847.
CAS
PubMed Central
PubMed
Google Scholar
Schwartz E, Henne A, Cramm R, Eitinger T, Friedrich B, Gottschalk G: Complete nucleotide sequence of pHG1: a Ralstonia eutropha H16 megaplasmid encoding key enzymes of H
2
-based lithoautotrophy and anaerobiosis. J Mol Biol 2003, 332: 369–383. 10.1016/S0022-2836(03)00894-5
Article
CAS
PubMed
Google Scholar
Schwartz E, Voigt B, Zühlke D, Pohlmann A, Lenz O, Albrecht D, Schwarze A, Kohlmann Y, Krause C, Hecker M, Friedrich B: A proteomic view of the facultatively chemolithoautotrophic lifestyle of Ralstonia eutropha H16. Proteomics 2009, 9: 5132–5142. 10.1002/pmic.200900333
Article
CAS
PubMed
Google Scholar
Schweizer HP, Jump R, Po C: Structure and gene-polypeptide relationships of the region encoding glycerol diffusion facilitator ( glpF ) and glycerol kinase ( glpK ) of Pseudomonas aeruginosa . Microbiology 1997, 143: 1287–1297. 10.1099/00221287-143-4-1287
Article
CAS
PubMed
Google Scholar
Solaiman DKY, Ashby RD, Foglia TA, Marmer WN: Conversion of agricultural feedstock and coproducts into poly(hydroxyalkanoates). Appl Microbiol Biotechnol 2006, 71: 783–789. 10.1007/s00253-006-0451-1
Article
CAS
PubMed
Google Scholar
Srivastava S, Urban M, Friedrich B: Mutagenesis of Alcaligenes eutrophus by insertion of the drug-resistance transposon Tn 5 . Arch Microbiol 1982, 131: 203–207. 10.1007/BF00405879
Article
CAS
PubMed
Google Scholar
Stülke J, Hillen W: Coupling physiology and gene regulation in bacteria: the phosphotransferase sugar uptake system delivers the signals. Naturwissenschaften 1998, 85: 583–592. 10.1007/s001140050555
Article
PubMed
Google Scholar
Sweet G, Gandor C, Voegele R, Wittekindt N, Beuerle J, Truniger V, Lin ECC, Boos W: Glycerol facilitator of Escherichia coli : cloning of glpF and identification of the glpF product. J Bacteriol 1990, 172: 424–430.
CAS
PubMed Central
PubMed
Google Scholar
Timm A, Steinbüchel A: Formation of polyesters consisting of medium-chain-length 3-hydroxyalkanoic acids from gluconate by Pseudomonas aeruginosa and other fluorescent pseudomonads. Appl Environ Microbiol 1990, 56: 3360–3367.
CAS
PubMed Central
PubMed
Google Scholar
Velázquez F, Pflüger K, Cases I, De Eugenio LI, de Lorenzo V: The phosphotransferase system formed by PtsP, PtsO, and PtsN proteins controls production of polyhydroxyalkanoates in Pseudomonas putida . J Bacteriol 2007, 189: 4529–4533. 10.1128/JB.00033-07
Article
PubMed Central
PubMed
Google Scholar
Voegele RT, Sweet GD, Boos W: Glycerol kinase of Escherichia coli is activated by interaction with glycerol facilitator. J Bacteriol 1993, 175: 1087–1094.
CAS
PubMed Central
PubMed
Google Scholar
Zhu C, Nomura CT, Perrotta JA, Stipanovic AJ, Nakas JP: Production and characterization of poly-3-hydroxybutyrate from biodiesel-glycerol by Burkholderia cepacia ATCC 17759. Biotechnol Prog 2010, 26: 424–430.
CAS
PubMed
Google Scholar
Zimmer B, Hillmann A, Görke B: Requirements for the phosphorylation of the Escherichia coli EIIANtr
protein in vivo . FEMS Microbiol Lett 2008, 286: 96–102. 10.1111/j.1574-6968.2008.01262.x
Article
CAS
PubMed
Google Scholar