Abranches J, Zeng L, Kajfasz JK, Palmer SR, Chakraborty B, Wen ZT, Richards VP, Brady LJ, Lemos JA (2018) Biology of oral streptococci. Microbiol Spectr. https://doi.org/10.1128/microbiolspec.GPP3-0042-2018
Article
Google Scholar
Aytar Celik P, Derkus B, Erdogan K, Barut D, Blaise Manga E, Yildirim Y, Pecha S, Cabuk A (2022) Bacterial membrane vesicle functions, laboratory methods, and applications. Biotechnol Adv 54:107869. https://doi.org/10.1016/j.biotechadv.2021.107869
Article
CAS
Google Scholar
Becker MR, Paster BJ, Leys EJ, Moeschberger ML, Kenyon SG, Galvin JL, Boches SK, Dewhirst FE, Griffen AL (2002) Molecular analysis of bacterial species associated with childhood caries. J Clin Microbiol 40(3):1001–1009. https://doi.org/10.1128/JCM.40.3.1001-1009.2002
Article
CAS
Google Scholar
Bitto NJ, Zavan L, Johnston EL, Stinear TP, Hill AF, Kaparakis-Liaskos M (2021) Considerations for the analysis of bacterial membrane vesicles: methods of vesicle production and quantification can influence biological and experimental outcomes. Microbiol Spectrum. https://doi.org/10.1128/Spectrum.01273-21
Article
Google Scholar
Bowen WH, Koo H (2011) Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms. Caries Res 45(1):69–86. https://doi.org/10.1159/000324598
Article
CAS
Google Scholar
Brown L, Kessler A, Cabezas-Sanchez P, Luque-Garcia JL, Casadevall A (2014) Extracellular vesicles produced by the Gram-positive bacterium Bacillus subtilis are disrupted by the lipopeptide surfactin. Mol Microbiol 93(1):183–198. https://doi.org/10.1111/mmi.12650
Article
CAS
Google Scholar
Cao Y, Lin H (2021) Characterization and function of membrane vesicles in Gram-positive bacteria. Appl Microbiol Biotechnol 105(5):1795–1801. https://doi.org/10.1007/s00253-021-11140-1
Article
CAS
Google Scholar
Cao Y, Zhou Y, Chen D, Wu R, Guo L, Lin H (2020) Proteomic and metabolic characterization of membrane vesicles derived from Streptococcus mutans at different pH values. Appl Microbiol Biotechnol 104(22):9733–9748. https://doi.org/10.1007/s00253-020-10563-6
Article
CAS
Google Scholar
Caufield PW, Dasanayake AP, Li Y, Pan Y, Hsu J, Hardin JM (2000) Natural history of Streptococcus sanguinis in the oral cavity of infants: evidence for a discrete window of infectivity. Infect Immun 68(7):4018–4023. https://doi.org/10.1128/IAI.68.7.4018-4023.2000
Article
CAS
Google Scholar
Das T, Sharma PK, Busscher HJ, van der Mei HC, Krom BP (2010) Role of extracellular DNA in initial bacterial adhesion and surface aggregation. Appl Environ Microbiol 76(10):3405–3408. https://doi.org/10.1128/AEM.03119-09
Article
CAS
Google Scholar
Das T, Sehar S, Manefield M (2013) The roles of extracellular DNA in the structural integrity of extracellular polymeric substance and bacterial biofilm development. Environ Microbiol Rep 5(6):778–786. https://doi.org/10.1111/1758-2229.12085
Article
CAS
Google Scholar
Du MQ, Li Z, Jiang H, Wang X, Feng XP, Hu DY, Lin HC, Wang B, Si Y, Wang CX, Zheng SG, Liu XN, Rong WS, Wang WJ, Tai BJ (2018) Dental caries status and its associated factors among 3- to 5-year-old children in china: a national survey. Chin J Dental Res 21(3):167–179. https://doi.org/10.3290/j.cjdr.a41076
Article
Google Scholar
Esberg A, Lofgren-Burstrom A, Ohman U, Stromberg N (2012) Host and bacterial phenotype variation in adhesion of Streptococcus mutans to matched human hosts. Infect Immun 80(11):3869–3879. https://doi.org/10.1128/IAI.00435-12
Article
CAS
Google Scholar
Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8(9):623–633. https://doi.org/10.1038/nrmicro2415
Article
CAS
Google Scholar
Ge Y, Caufield PW, Fisch GS, Li Y (2008) Streptococcus mutans and Streptococcus sanguinis colonization correlated with caries experience in children. Caries Res 42(6):444–448. https://doi.org/10.1159/000159608
Article
CAS
Google Scholar
Gong T, Tang BY, Zhou XD, Zeng JM, Lu M, Guo XX, Peng X, Lei L, Gong B, Li YQ (2018) Genome editing in Streptococcus mutans through self-targeting CRISPR arrays. Mol Oral Microbiol 33(6):440–449. https://doi.org/10.1111/omi.12247
Article
CAS
Google Scholar
Hara AT, Zero DT (2010) The caries environment: saliva, pellicle, diet, and hard tissue ultrastructure. Dent Clin North Am 54(3):455–467. https://doi.org/10.1016/j.cden.2010.03.008
Article
Google Scholar
Hazlett KRO, Caldon SD, McArthur DG, Cirillo KA, Kirimanjeswara GS, Magguilli ML, Malik M, Shah A, Broderick S, Golovliov I, Metzger DW, Rajan K, Sellati TJ, Loegering DJ (2008) Adaptation of Francisella tularensis to the mammalian environment is governed by cues which can be mimicked in vitro. Infect Immun 76(10):4479–4488. https://doi.org/10.1128/Iai.00610-08
Article
CAS
Google Scholar
Hojo K, Nagaoka S, Ohshima T, Maeda N (2009) Bacterial interactions in dental biofilm development. J Dent Res 88(11):982–990. https://doi.org/10.1177/0022034509346811
Article
CAS
Google Scholar
Huang R, Li M, Gregory RL (2011) Bacterial interactions in dental biofilm. Virulence 2(5):435–444. https://doi.org/10.4161/viru.2.5.16140
Article
Google Scholar
Huang XL, Browngardt CM, Jiang M, Ahn SJ, Burne RA, Nascimento MM (2018) Diversity in antagonistic interactions between commensal oral streptococci and Streptococcus mutans. Caries Res 52(1–2):88–101. https://doi.org/10.1159/000479091
Article
CAS
Google Scholar
Hwang G, Klein MI, Koo H (2014) Analysis of the mechanical stability and surface detachment of mature Streptococcus mutans biofilms by applying a range of external shear forces. Biofouling 30(9):1079–1091. https://doi.org/10.1080/08927014.2014.969249
Article
CAS
Google Scholar
Im H, Lee S, Soper SA, Mitchell RJ (2017) Staphylococcus aureus extracellular vesicles (EVs): surface-binding antagonists of biofilm formation. Mol Biosyst 13(12):2704–2714. https://doi.org/10.1039/c7mb00365j
Article
CAS
Google Scholar
Ito T, Ichinosawa T, Shimizu T (2017) Streptococcal adhesin SspA/B analogue peptide inhibits adherence and impacts biofilm formation of Streptococcus mutans. PLoS ONE 12(4):e0175483. https://doi.org/10.1371/journal.pone.0175483
Article
CAS
Google Scholar
Itzek A, Zheng L, Chen Z, Merritt J, Kreth J (2011) Hydrogen peroxide-dependent DNA release and transfer of antibiotic resistance genes in Streptococcus gordonii. J Bacteriol 193(24):6912–6922. https://doi.org/10.1128/JB.05791-11
Article
CAS
Google Scholar
Klimentova J, Stulik J (2015) Methods of isolation and purification of outer membrane vesicles from gram-negative bacteria. Microbiol Res 170:1–9. https://doi.org/10.1016/j.micres.2014.09.006
Article
CAS
Google Scholar
Kreth J, Merritt J, Shi WY, Qi FX (2005) Competition and coexistence between Streptococcus mutans and Streptococcus sanguinis in the dental biofilm. J Bacteriol 187(21):7193–7203. https://doi.org/10.1128/Jb.187.21.7193-7203.2005
Article
CAS
Google Scholar
Kreth J, Zhang Y, Herzberg MC (2008) Streptococcal antagonism in oral biofilms: Streptococcus sanguinis and Streptococcus gordonii interference with Streptococcus mutans. J Bacteriol 190(13):4632–4640. https://doi.org/10.1128/JB.00276-08
Article
CAS
Google Scholar
Kreth J, Vu H, Zhang Y, Herzberg MC (2009) Characterization of hydrogen peroxide-induced DNA release by Streptococcus sanguinis and Streptococcus gordonii. J Bacteriol 191(20):6281–6291. https://doi.org/10.1128/JB.00906-09
Article
CAS
Google Scholar
Lee EY, Choi DY, Kim DK, Kim JW, Park JO, Kim S, Kim SH, Desiderio DM, Kim YK, Kim KP, Gho YS (2009) Gram-positive bacteria produce membrane vesicles: proteomics-based characterization of Staphylococcus aureus-derived membrane vesicles. Proteomics 9(24):5425–5436. https://doi.org/10.1002/pmic.200900338
Article
CAS
Google Scholar
Lemos JA, Abranches J, Burne RA (2005) Responses of cariogenic streptococci to environmental stresses. Curr Issues Mol Biol 7(1):95–107
Google Scholar
Liao SM, Klein MI, Heim KP, Fan YW, Bitoun JP, Ahn SJ, Burne RA, Koo H, Brady LJ, Wen ZZT (2014) Streptococcus mutans extracellular DNA is upregulated during growth in biofilms, actively released via membrane vesicles, and influenced by components of the protein secretion machinery. J Bacteriol 196(13):2355–2366. https://doi.org/10.1128/Jb.01493-14
Article
Google Scholar
Liu J, Stone VN, Ge X, Tang M, Elrami F, Xu P (2017) TetR family regulator brpT modulates biofilm formation in Streptococcus sanguinis. PLoS ONE 12(1):e0169301. https://doi.org/10.1371/journal.pone.0169301
Article
CAS
Google Scholar
Loesche WJ (1986) Role of Streptococcus mutans in human dental decay. Microbiol Rev 50(4):353–380. https://doi.org/10.1128/mr.50.4.353-380.1986
Article
CAS
Google Scholar
Lozano CP, Diaz-Garrido N, Kreth J, Giacaman RA (2019) Streptococcus mutans and Streptococcus sanguinis expression of competition-related genes, under sucrose. Caries Res 53(2):194–203. https://doi.org/10.1159/000490950
Article
CAS
Google Scholar
Lyu X, Wang L, Shui Y, Jiang Q, Chen L, Yang W, He X, Zeng J, Li Y (2021) Ursolic acid inhibits multi-species biofilms developed by Streptococcus mutans, Streptococcus sanguinis, and Streptococcus gordonii. Arch Oral Biol 125:105107. https://doi.org/10.1016/j.archoralbio.2021.105107
Article
CAS
Google Scholar
Marsh PD, Zaura E (2017) Dental biofilm: ecological interactions in health and disease. J Clin Periodontol 44(Suppl 18):S12–S22. https://doi.org/10.1111/jcpe.12679
Article
Google Scholar
McCaig WD, Koller A, Thanassi DG (2013) Production of outer membrane vesicles and outer membrane tubes by Francisella novicida. J Bacteriol 195(6):1120–1132. https://doi.org/10.1128/JB.02007-12
Article
CAS
Google Scholar
Petersen PE, Bourgeois D, Ogawa H, Estupinan-Day S, Ndiaye C (2005) The global burden of oral diseases and risks to oral health. Bull World Health Organ 83(9):661–669
Google Scholar
Pitts NB, Zero DT, Marsh PD, Ekstrand K, Weintraub JA, Ramos-Gomez F, Tagami J, Twetman S, Tsakos G, Ismail A (2017) Dental caries. Nat Rev Dis Primers 3:17030. https://doi.org/10.1038/nrdp.2017.30
Article
Google Scholar
Prados-Rosales R, Baena A, Martinez LR, Luque-Garcia J, Kalscheuer R, Veeraraghavan U, Camara C, Nosanchuk JD, Besra GS, Chen B, Jimenez J, Glatman-Freedman A, Jacobs WR, Porcelli SA, Casadevall A (2011) Mycobacteria release active membrane vesicles that modulate immune responses in a TLR2-dependent manner in mice. J Clin Invest 121(4):1471–1483. https://doi.org/10.1172/Jci44261
Article
Google Scholar
Quivey RG Jr, Kuhnert WL, Hahn K (2000) Adaptation of oral streptococci to low pH. Adv Microb Physiol 42:239–274. https://doi.org/10.1016/s0065-2911(00)42004-7
Article
CAS
Google Scholar
Rainey K, Michalek SM, Wen ZT, Wu H (2019) Glycosyltransferase-mediated biofilm matrix dynamics and virulence of Streptococcus mutans. Appl Environ Microbiol. https://doi.org/10.1128/AEM.02247-18
Article
Google Scholar
Rogers JD, Palmer RJ Jr, Kolenbrander PE, Scannapieco FA (2001) Role of Streptococcus gordonii amylase-binding protein A in adhesion to hydroxyapatite, starch metabolism, and biofilm formation. Infect Immun 69(11):7046–7056. https://doi.org/10.1128/IAI.69.11.7046-7056.2001
Article
CAS
Google Scholar
Schooling SR, Beveridge TJ (2006) Membrane vesicles: an overlooked component of the matrices of biofilms. J Bacteriol 188(16):5945–5957. https://doi.org/10.1128/JB.00257-06
Article
CAS
Google Scholar
Senpuku H, Nakamura T, Iwabuchi Y, Hirayama S, Nakao R, Ohnishi M (2019) Effects of complex DNA and MVs with GTF extracted from Streptococcus mutans on the oral biofilm. Molecules. https://doi.org/10.3390/molecules24173131
Article
Google Scholar
Tanzer JM, Grant L, Thompson A, Li L, Rogers JD, Haase EM, Scannapieco FA (2003) Amylase-binding proteins A (AbpA) and B (AbpB) differentially affect colonization of rats’ teeth by Streptococcus gordonii. Microbiology (reading) 149(Pt 9):2653–2660. https://doi.org/10.1099/mic.0.26022-0
Article
CAS
Google Scholar
Tashiro Y, Ichikawa S, Shimizu M, Toyofuku M, Takaya N, Nakajima-Kambe T, Uchiyama H, Nomura N (2010) Variation of physiochemical properties and cell association activity of membrane vesicles with growth phase in Pseudomonas aeruginosa. Appl Environ Microbiol 76(11):3732–3739. https://doi.org/10.1128/AEM.02794-09
Article
CAS
Google Scholar
Toyofuku M, Nomura N, Eberl L (2019) Types and origins of bacterial membrane vesicles. Nat Rev Microbiol 17(1):13–24. https://doi.org/10.1038/s41579-018-0112-2
Article
CAS
Google Scholar
Tsolakos N, Lie K, Bolstad K, Maslen S, Kristiansen PA, Hoiby EA, Wallington A, Vipond C, Skehel M, Tang CM, Feavers IM, Wedege E, Wheeler JX (2010) Characterization of meningococcal serogroup B outer membrane vesicle vaccines from strain 44/76 after growth in different media. Vaccine 28(18):3211–3218. https://doi.org/10.1016/j.vaccine.2010.02.023
Article
CAS
Google Scholar
Tsumori H, Kuramitsu H (1997) The role of the Streptococcus mutans glucosyltransferases in the sucrose-dependent attachment to smooth surfaces: essential role of the GtfC enzyme. Oral Microbiol Immunol 12(5):274–280. https://doi.org/10.1111/j.1399-302x.1997.tb00391.x
Article
CAS
Google Scholar
Vacca-Smith AM, Bowen WH (1998) Binding properties of streptococcal glucosyltransferases for hydroxyapatite, saliva-coated hydroxyapatite, and bacterial surfaces. Arch Oral Biol 43(2):103–110. https://doi.org/10.1016/s0003-9969(97)00111-8
Article
CAS
Google Scholar
Vickerman MM, Sulavik MC, Nowak JD, Gardner NM, Jones GW, Clewell DB (1997) Nucleotide sequence analysis of the Streptococcus gordonii glucosyltransferase gene, gtfG. DNA Seq 7(2):83–95. https://doi.org/10.3109/10425179709020155
Article
CAS
Google Scholar
Wang BY, Kuramitsu HK (2005) Interactions between oral bacteria: Inhibition of Streptococcus mutans bacteriocin production by Streptococcus gordonii. Appl Environ Microb 71(1):354–362. https://doi.org/10.1128/Aem.71.1.354-362.2005
Article
CAS
Google Scholar
Wang WD, Chanda W, Zhong MT (2015) The relationship between biofilm and outer membrane vesicles: a novel therapy overview. Fems Microbiol Lett. https://doi.org/10.1093/femsle/fnv117
Article
Google Scholar
Wu R, Tao Y, Cao Y, Zhou Y, Lin H (2020) Streptococcus mutans membrane vesicles harboring glucosyltransferases augment Candida albicans biofilm development. Front Microbiol 11:581184. https://doi.org/10.3389/fmicb.2020.581184
Article
Google Scholar
Wu R, Cui G, Cao Y, Zhao W, Lin H (2022) Streptococcus mutans membrane vesicles enhance Candida albicans pathogenicity and carbohydrate metabolism. Front Cell Infect Microbiol 12:940602. https://doi.org/10.3389/fcimb.2022.940602
Article
CAS
Google Scholar
Xi Y, Wang Y, Gao J, Xiao Y, Du J (2019) Dual corona vesicles with intrinsic antibacterial and enhanced antibiotic delivery capabilities for effective treatment of biofilm-induced periodontitis. ACS Nano 13(12):13645–13657. https://doi.org/10.1021/acsnano.9b03237
Article
CAS
Google Scholar
Xu P, Alves JM, Kitten T, Brown A, Chen Z, Ozaki LS, Manque P, Ge X, Serrano MG, Puiu D, Hendricks S, Wang Y, Chaplin MD, Akan D, Paik S, Peterson DL, Macrina FL, Buck GA (2007) Genome of the opportunistic pathogen Streptococcus sanguinis. J Bacteriol 189(8):3166–3175. https://doi.org/10.1128/JB.01808-06
Article
CAS
Google Scholar
Yoshida Y, Konno H, Nagano K, Abiko Y, Nakamura Y, Tanaka Y, Yoshimura F (2014) The influence of a glucosyltransferase, encoded by gtfP, on biofilm formation by Streptococcus sanguinis in a dual-species model. APMIS 122(10):951–960. https://doi.org/10.1111/apm.12238
Article
CAS
Google Scholar
Zheng L, Itzek A, Chen Z, Kreth J (2011) Environmental influences on competitive hydrogen peroxide production in Streptococcus gordonii. Appl Environ Microbiol 77(13):4318–4328. https://doi.org/10.1128/AEM.00309-11
Article
CAS
Google Scholar
Zheng L, Chen Z, Itzek A, Herzberg MC, Kreth J (2012) CcpA regulates biofilm formation and competence in Streptococcus gordonii. Mol Oral Microbiol 27(2):83–94. https://doi.org/10.1111/j.2041-1014.2011.00633.x
Article
CAS
Google Scholar
Zhou Y, Yang J, Zhang L, Zhou X, Cisar JO, Palmer RJ Jr (2016) Differential utilization of basic proline-rich glycoproteins during growth of oral bacteria in saliva. Appl Environ Microbiol 82(17):5249–5258. https://doi.org/10.1128/AEM.01111-16
Article
CAS
Google Scholar
Zhu B, Ge X, Stone V, Kong X, El-Rami F, Liu Y, Kitten T, Xu P (2017) ciaR impacts biofilm formation by regulating an arginine biosynthesis pathway in Streptococcus sanguinis SK36. Sci Rep 7(1):17183. https://doi.org/10.1038/s41598-017-17383-1
Article
CAS
Google Scholar
Zhu B, Song L, Kong X, Macleod LC, Xu P (2018) A novel regulator modulates glucan production, cell aggregation and biofilm formation in Streptococcus sanguinis SK36. Front Microbiol 9:1154. https://doi.org/10.3389/fmicb.2018.01154
Article
Google Scholar