Adav SS, Cheow ESH, Ravindran A, Dutta B, Sze SK (2012) Label free quantitative proteomic analysis of secretome by Thermobifida fusca on different lignocellulosic biomass. J Proteomics
75:3694–3706. https://doi.org/10.1016/j.jprot.2012.04.031
Article
CAS
PubMed
Google Scholar
Anastas P, Eghbali N (2010) Green chemistry: principles and practice. Chem Soc Rev 39:301–312. https://doi.org/10.1039/B918763B
Article
CAS
PubMed
Google Scholar
Arai H, Yamamoto T, Ohishi T, Shimizu T, Nakata T, Kudo TY (1999) Genetic organization and characteristics of the 3-(3-hydroxyphenyl)propionic acid degradation pathway of Comamonas testosteroni TA441. Microbiology 145:2813–2820. https://doi.org/10.1099/00221287-145-10-2813
Article
CAS
PubMed
Google Scholar
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29. https://doi.org/10.1038/75556
Article
CAS
PubMed
PubMed Central
Google Scholar
Balsanelli E, Tadra-Sfeir MZ, Faoro H, Pankievicz VC, de Baura VA, Pedrosa FO, de Souza EM, Dixon R, Monteiro RA (2016) Molecular adaptations of Herbaspirillum seropedicae during colonization of the maize rhizosphere. Environ Microbiol 18:2343–2356. https://doi.org/10.1111/1462-2920.12887
Article
CAS
PubMed
Google Scholar
Barnes MR, Duetz WA, Williams PA (1997) A 3-(3-hydroxyphenyl)propionic acid catabolic pathway in Rhodococcus globerulus PWD1: cloning and characterization of the hpp operon. J Bacteriol 179:6145–6153. https://doi.org/10.1128/jb.179.19.6145-6153.1997
Article
CAS
PubMed
PubMed Central
Google Scholar
Behrends V, Jg B, Williams Hd (2011) Differences in strategies to combat osmotic stress in Burkholderia cenocepacia elucidated by NMR-based metabolic profiling. Lett Appl Microbiol 52:619–625. https://doi.org/10.1111/j.1472-765X.2011.03050.x
Article
CAS
PubMed
Google Scholar
Bennett JP, Bertin L, Moulton B, Fairlamb IJS, Brzozowski AM, Walton NJ, Grogan G (2008) A ternary complex of hydroxycinnamoyl-CoA hydratase–lyase (HCHL) with acetyl-CoA and vanillin gives insights into substrate specificity and mechanism. Biochem 414:281–289. https://doi.org/10.1042/BJ20080714
Article
CAS
Google Scholar
Berger T, Poyntner C, Margesin R (2021) Culturable bacteria from an Alpine coniferous forest site: biodegradation potential of organic polymers and pollutants. Folia Microbiol 66:87–98. https://doi.org/10.1007/s12223-020-00825-1
Article
CAS
Google Scholar
Burlingame R, Chapman PJ (1983) Catabolism of phenylpropionic acid and its 3- hydroxyderivative by Escherichia coli. J Bacteriol 155:113–121. https://doi.org/10.1128/jb.155.1.113-121.1983
Article
CAS
PubMed
PubMed Central
Google Scholar
Bugg TD, Ahmad M, Hardiman EM, Singh R (2011) The emerging role for bacteria in lignin degradation and bio-product formation. Curr Opin Biotechnol 22:394–400. https://doi.org/10.1016/j.copbio.2010.10.009
Article
CAS
PubMed
Google Scholar
Cao L, Yu IKM, Liu Y, Ruan X, Tsang DCW, Hunt AJ, Ok YS, Song H, Zhang S (2018) Lignin valorization for the production of renewable chemicals: state-of-the-art review and future prospects. Bioresour Technol 269:465–475. https://doi.org/10.1016/j.biortech.2018.08.065
Article
CAS
PubMed
Google Scholar
Chain PSG, Denef VJ, Konstantinidis KT, Vergez LM, Agulló L, Reyes VL, Hauser L, Córdova M, Gómez L, González M, Land M, Lao V, Larimer F, LiPuma JJ, Mahenthiralingam E, Malfatti SA, Marx CJ, Parnell JJ, Ramette A, Richardson P, Seeger M, Smith D, Spilker T, Sul WJ, Tsoi TV, Ulrich LE, Zhulin IB, Tiedje JM (2006) Burkholderia xenovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility. PNAS 103:15280–15287. https://doi.org/10.1073/pnas.0606924103
Article
PubMed
PubMed Central
Google Scholar
Chen S, Zhou Y, Chen Y, Gu J (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. J Bioinform 34:i884–i890. https://doi.org/10.1093/bioinformatics/bty560
Article
CAS
Google Scholar
Civolani C, Barghini P, Roncetti AR, Ruzzi M, Schiesser A (2000) Bioconversion of ferulic acid into vanillic acid by means of a vanillate-negative mutant of Pseudomonas fluorescens strain BF13. Appl Env Microbiol 66:2311–2317. https://doi.org/10.1128/AEM.66.6.2311-2317.2000
Article
CAS
Google Scholar
Dagley S, Chapman PJ, Gibson DT (1965) The metabolism of β-phenylpropionic acid by an Achromobacter. Biochem J 97:643–650. https://doi.org/10.1042/bj0970643
Article
CAS
PubMed
PubMed Central
Google Scholar
DeAngelis K, Sharma D, Varney R, Simmons B, Isern N, Markillie LM, Nicora C, Norbeck A, Taylor R, Aldrich J, Robinson E (2013) Evidence supporting dissimilatory and assimilatory lignin degradation in Enterobacter lignolyticus SCF1. Front Microbiol. https://doi.org/10.3389/fmicb.2013.00280
Article
PubMed
PubMed Central
Google Scholar
DeShazer D, Brett PJ, Woods DE (1998) The type II O-antigenic polysaccharide moiety of Burkholderia pseudomallei lipopolysaccharide is required for serum resistance and virulence. Mol Microbiol 30:1081–1100. https://doi.org/10.1046/j.1365-2958.1998.01139
Article
CAS
PubMed
Google Scholar
Donoso R, Leiva-Novoa P, Zúñiga A, Timmermann T, Recabarren-Gajardo G, González B (2016) Biochemical and genetic bases of indole-3-acetic acid (auxin phytohormone) degradation by the plant-growth-promoting rhizobacterium Paraburkholderia phytofirmans PsJN. Appl Environ Microbiol 83:e01991-e2016. https://doi.org/10.1128/AEM.01991-16
Article
PubMed
PubMed Central
Google Scholar
Fuchs G, Boll M, Heider J (2011) Microbial degradation of aromatic compounds—from one strategy to four. Nat Rev Microbiol 9:803–816. https://doi.org/10.1038/nrmicro2652
Article
CAS
PubMed
Google Scholar
Gasson MJ, Kitamura Y, McLauchlan WR, Narbad A, Parr AJ, Parsons ELH, Payne J, Rhodes MJC, Walton NJ (1998) Metabolism of ferulic acid to vanillin: a bacterial gene of the enoyl-SCo-A hydratase/isomerase superfamily encodes an enzyme for the hydration and cleavage of hydroxycinnamic acid SCoA thioester. J Biol Chem 273:4163–4170. https://doi.org/10.1074/jbc.273.7.4163
Article
CAS
PubMed
Google Scholar
Graf N, Altenbuchner J (2014) Genetic engineering of Pseudomonas putida KT2440 for rapid and high-yield production of vanillin from ferulic acid. Appl Microbiol Biotechnol 98:137–149. https://doi.org/10.1007/s00253-013-5303-1
Article
CAS
PubMed
Google Scholar
Graninger M, Nidetzky B, Heinrichs DE, Whitfield C, Messner P (1999) Characterization of dTDP-4-dehydrorhamnose 3,5-epimerase and dTDP-4-dehydrorhamnose reductase, required for dTDP-L-rhamnose biosynthesis in Salmonella enterica serovar Typhimurium LT2. J Biol Chem 275:25069–25077. https://doi.org/10.1074/jbc.274.35.25069
Article
Google Scholar
Herpell JB, Vanwijnsberghe S, Peeters C, Schindler F, Fragner L, Bejtović M, Weckwerth W, Vandamme P (2021) Paraburkholderia dioscoreae sp. nov., a novel plant associated growth promotor. Int J Syst Evol Microbiol 71:004969. https://doi.org/10.1099/ijsem.0.004969
Article
CAS
PubMed
PubMed Central
Google Scholar
Iguchi H, Yurimoto H, Sakai Y (2011) Stimulation of methanotrophic growth in cocultures by cobalamin excreted by Rhizobia. Appl Environ Microbiol. https://doi.org/10.1128/AEM.05834-11
Article
PubMed
PubMed Central
Google Scholar
Inkscape Project (2020) Inkscape. Retrieved from https://inkscape.org. Accessed May 2022.
Joshi F, Archana G, Desai A (2006) Siderophore cross-utilization amongst rhizospheric bacteria and the role of their differential affinities for Fe3+ on growth stimulation under iron-limited conditions. Curr Microbiol 53:141. https://doi.org/10.1007/s00284-005-0400-8
Article
CAS
PubMed
Google Scholar
Kamimura N, Takahashi K, Mori K, Araki T, Fujita M, Higuchi Y, Masai E (2017) Bacterial catabolism of lignin-derived aromatics: New findings in a recent decade: Update on bacterial lignin catabolism. Environ Microbiol Rep 9:679–705. https://doi.org/10.1111/1758-2229.12597
Article
CAS
PubMed
Google Scholar
Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30. https://doi.org/10.1093/nar/28.1.27
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaneko M, Ohnishi Y, Horinouchi S (2003) Cinnamate: coenzyme A ligase from the filamentous bacterium Streptomyces coelicolor A3(2). J Bacteriol 185:20–27. https://doi.org/10.1128/JB.185.1.20-27.2003
Article
CAS
PubMed
PubMed Central
Google Scholar
Knott BC, Erickson E, Allen MD, Gado JE, Graham R, Kearns FL, Pardo I, Topuzlu E, Anderson JJ, Austin HP, Dominick G, Johnson CW, Rorrer NA, Szostkiewicz CJ, Copié V, Payne CM, Woodcock HL, Donohoe BS, Beckham GT, McGeehan JE (2020) Characterization and engineering of a two-enzyme system for plastics depolymerization. PNAS 117:25476–25485. https://doi.org/10.1073/pnas.2006753117
Article
CAS
PubMed
PubMed Central
Google Scholar
Kovacs-Simon A, Hemsley CM, Scott AE, Prior JL, Titball RW (2019) Burkholderia thailandensis strain E555 is a surrogate for the investigation of Burkholderia pseudomallei replication and survival in macrophages. BMC Microbiol 19:97. https://doi.org/10.1186/s12866-019-1469-8
Article
CAS
PubMed
PubMed Central
Google Scholar
Kubota T, Tanaka Y, Takemoto N, Hiraga K, Yukawa H, Inui M (2015) Identification and expression analysis of a gene encoding a shikimate transporter of Corynebacterium glutamicum. Microbiology 161:254–263. https://doi.org/10.1099/mic.0.083733-0
Article
CAS
PubMed
Google Scholar
Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. https://doi.org/10.1038/nmeth.1923
Article
CAS
PubMed
PubMed Central
Google Scholar
Leahy JG, Olsen RH (1997) Kinetics of toluene degradation by toluene-oxidizing bacteria as a function of oxygen concentration, and the effect of nitrate. FEMS Microbiol Ecol 23:23–30. https://doi.org/10.1111/j.1574-6941.1997.tb00387
Article
CAS
Google Scholar
Lee Y, Jeon CO (2018) Paraburkholderia aromaticivorans sp. Nov., an aromatic hydrocarbon-degrading bacterium, isolated from gasoline-contaminated soil. Int J Syst Evol Microbiol. https://doi.org/10.1099/ijsem.0.002661
Article
PubMed
Google Scholar
Lee S, Lee JH, Mitchell RJ (2015) Analysis of Clostridium beijerinckii NCIMB 8052’s transcriptional response to ferulic acid and its application to enhance the strain tolerance. Biotechnol Biofuels 8:68. https://doi.org/10.1186/s13068-015-0252-9
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome project data processing subgroup (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352
Article
CAS
PubMed
PubMed Central
Google Scholar
Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930. https://doi.org/10.1093/bioinformatics/btt656
Article
CAS
PubMed
Google Scholar
Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. https://doi.org/10.1186/s13059-014-0550-8
Article
CAS
PubMed
PubMed Central
Google Scholar
Margesin R, Schinner F (1997) Bioremediation of diesel-oil-contaminated alpine soils at low temperatures. Appl Microbiol Biotechnol 47:462–468. https://doi.org/10.1007/s002530050957
Article
CAS
Google Scholar
Margesin R, Volgger G, Wagner AO, Zhang D, Poyntner C (2021) Biodegradation of lignin monomers and bioconversion of ferulic acid to vanillic acid by Paraburkholderia aromaticivorans AR20-38 isolated from Alpine forest soil. Appl Microbiol Biotechnol 105:2967–2977. https://doi.org/10.1007/s00253-021-11215-z
Article
CAS
PubMed
PubMed Central
Google Scholar
Mori Y, Noda S, Shirai T, Kondo A (2021) Direct 1,3-butadiene biosynthesis in Escherichia coli via a tailored ferulic acid decarboxylase mutant. Nat Commun 12:2195. https://doi.org/10.1038/s41467-021-22504-6
Article
CAS
PubMed
PubMed Central
Google Scholar
Parnell JJ, Park J, Denef V, Tsoi T, Hashsham S, Quensen J, Tiedje JM (2006) Coping with polychlorinated biphenyl (PCB) toxicity: Physiological and genome-wide responses of Burkholderia xenovorans LB400 to PCB-mediated stress. Appl Environ Microbiol 72:6607–6614. https://doi.org/10.1128/AEM.01129-06
Article
CAS
PubMed
PubMed Central
Google Scholar
Pérez-Pantoja D, De la Iglesia R, Pieper DH, González B (2008) Metabolic reconstruction of aromatic compounds degradation from the genome of the amazing pollutant-degrading bacterium Cupriavidus necator JMP134. FEMS Microbiol Rev 32:736–794. https://doi.org/10.1111/j.1574-6976.2008.00122.x
Article
CAS
PubMed
Google Scholar
Poyntner C, Zhang D, Margesin R (2020) Draft genome sequence of the bacterium Paraburkholderia aromaticivorans AR20-38, a Gram-negative, cold-adapted degrader of aromatic compounds. Microbiol Resour Announc 9:e00463-e520. https://doi.org/10.1128/MRA.00463-20
Article
CAS
PubMed
PubMed Central
Google Scholar
Poyntner C, Kutzner A, Margesin R (2021) Biodegradation potential and putative catabolic genes of culturable bacteria from an Alpine deciduous forest site. Microorganisms 9:1920. https://doi.org/10.3390/microorganisms9091920
Article
CAS
PubMed
PubMed Central
Google Scholar
R Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed May 2022
Salvachúa D, Werner AZ, Pardo I, Michalska M, Black BA, Donohoe BS, Haugen SJ, Katahira R, Notonier S, Ramirez KJ, Amore A, Purvine SO, Zink EM, Abraham PE, Giannone RJ, Poudel S, Laible PD, Hettich RL, Beckham GT (2020) Outer membrane vesicles catabolize lignin-derived aromatic compounds in Pseudomonas putida KT2440. PNAS 117:9302–9310. https://doi.org/10.1073/pnas.1921073117
Article
CAS
PubMed
PubMed Central
Google Scholar
Sheibani-Tezerji R, Rattei T, Sessitsch A, Trognitz F, Mitter B (2015) Transcriptome profiling of the endophyte Burkholderia phytofirmans PsJN indicates sensing of the plant environment and drought stress. Mbio 6:e00621-e715. https://doi.org/10.1128/mBio.00621-15
Article
CAS
PubMed
PubMed Central
Google Scholar
Tropel D, van der Meer JR (2004) Bacterial transcriptional regulators for degradation pathways of aromatic compounds. Microbiol Mol Biol Rev 68:474–500. https://doi.org/10.1128/MMBR.68.3.474-500.2004
Article
CAS
PubMed
PubMed Central
Google Scholar
Upadhyay P, Singh NK, Tupe R, Odenath A, Lali A (2020) Biotransformation of corn bran derived ferulic acid to vanillic acid using engineered Pseudomonas putida KT2440. Prep Biochem Biotechnol 50:341–348. https://doi.org/10.1080/10826068.2019.1697935
Article
CAS
PubMed
Google Scholar
Vanwijnsberghe S, Peeters C, De Ridder E, Dumolin C, Wieme AD, Boon N, Vandamme P (2021) Genomic aromatic compound degradation potential of novel Paraburkholderia species: Paraburkholderia domus sp. nov., Paraburkholderia haematera sp. Nov. and Paraburkholderia nemoris sp. nov. Prep Biochem Biotechnol 22:7003. https://doi.org/10.3390/ijms22137003
Article
CAS
Google Scholar
Wagner AO, Markt R, Puempel T, Illmer P, Insam H, Ebner C (2017) Sample preparation, preservation, and storage for volatile fatty acid quantification in biogas plants. Eng Life Sci 17:132–139. https://doi.org/10.1002/elsc.201600095
Article
CAS
PubMed
Google Scholar
Wickham H (2016) ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York
Book
Google Scholar
Winkler J, Kao KC (2011) Transcriptional analysis of Lactobacillus brevis to n-butanol and ferulic acid stress responses. PLoS ONE 6(8):e21438. https://doi.org/10.1371/journal.pone.0021438
Article
CAS
PubMed
PubMed Central
Google Scholar
Wohl J, Petersen M (2020) Phenolic metabolism in the hornwort Anthoceros agrestis: 4-coumarate CoA ligase and 4-hydroxybenzoate CoA ligase. Plant Cell Rep 39:1129–1141. https://doi.org/10.1007/s00299-020-02552-w
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu Y, Chen B, Chao H, Zhou NY (2013) mhpT encodes an active transporter involved in 3-(3-hydroxyphenyl)propionate catabolism by Escherichia coli K-12. Appl Environ Microbiol 79:6362–6368. https://doi.org/10.1128/AEM.02110-13
Article
CAS
PubMed
PubMed Central
Google Scholar
Yoo HG, Kwon SY, Karki S, Kwon HJ (2011) A new route to dTDP-6-deoxy-L-talose and dTDP-L-rhamnose: dTDP-L-rhamnose 4-epimerase in Burkholderia thailandensis. Bioorganic Med Chem Lett 21:3914–3917. https://doi.org/10.1016/j.bmcl.2011.05.030
Article
CAS
Google Scholar
Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, Maeda Y, Toyohara K, Miyamoto K, Kimura Y, Oda K (2016) A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351:1196–1199. https://doi.org/10.1126/science.aad6359
Article
CAS
PubMed
Google Scholar
Yu G, Wang LG, Han Y, He QY (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. Omic J Integr Biol 16:28–287. https://doi.org/10.1089/omi.2011.0118
Article
CAS
Google Scholar
Zhang Y, Ezeji TC (2013) Transcriptional analysis of Clostridium beijerinckii NCIMB 8052 to elucidate role of furfural stress during acetone butanol ethanol fermentation. Biotechnol Biofuels 6:66. https://doi.org/10.1186/1754-6834-6-66
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou Y, Lin L, Wang H, Zhang Z, Zhou J, Jiao N (2020) Development of a CRISPR/Cas9-based tool for metabolic engineering of Pseudomonas putida for ferulic acid-to-polyhydroxyalkanoate bioconversion. Commun Biol 3:1–13. https://doi.org/10.1038/s42003-020-0824-5
Article
CAS
Google Scholar
Zhu D, Xu L, Sethupathy S, Si H, Ahmad F, Zhang R, Zhang W, Yang B, Sun J (2021) Decoding lignin valorization pathways in the extremophilic Bacillus ligniniphilus L1 for vanillin biosynthesis. Green Chem 23:9554–9570. https://doi.org/10.1039/D1GC02692E
Article
CAS
Google Scholar