Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26:1–20. https://doi.org/10.1016/j.jksus.2013.05.001
Article
Google Scholar
Bogino P, Banchio E, Rinaudi L, Cerioni G, Bonfiglio C, Giordano W (2006) Peanut (Arachis hypogaea) response to inoculation with Bradyrhizobium sp. in soils of Argentina. Ann Appl Biol 148(3):207–212. https://doi.org/10.1111/j.1744-7348.2006.00055.x
Article
Google Scholar
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo- Rodríguez AM, Chase J, Cope EK, Silva RD, Diener C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang L, Kaehler BD, Kang KB, Keefe CR, Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, Kreps J, Langille MGI, Lee J, Ley R, Liu YX, Loftfield E, Lozupone C, Maher M, Marotz C, Martin BD, McDonald D, Mclver LJ, Melnik AV, Metcalf JL, Morgan SC, Morton JT, Naimey AT, Navas-Molina JA, Nothias LF, Orchanian SB, Pearson T, Peoples SL, Petras D, Preuss ML, Pruesse E, Rasmussen LB, Rivers A, Robeson ll MS, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song SJ, Spear JR, Swafford AD, Thompson LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, UI-Hasan S, Hooft JJJ, Vargas F, Vázquez-Baeza Y, Vogtmann E, Hippel M, Walters W, Wan Y, Wang M, Warren J, Weber KC, Williamson CHD, Willis AD, Xu ZZ, Zaneveld JR, Zhang Y, Knight R, Caporaso JG, (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. https://doi.org/10.1038/s41587-019-0209-9
Article
CAS
PubMed
PubMed Central
Google Scholar
Bornsek SM, Ziberna L, Polak T, Vanzo A, Ulrih NP, Abram V (2012) Bilberry and blueberry anthocyanins act as powerful intracellular antioxidants in mammalian cells. Food Chem 134(4):1878–1884. https://doi.org/10.1016/j.foodchem.2012.03.092
Article
CAS
PubMed
Google Scholar
Burkhard N, Lynch D, Percival D, Sharifi M (2009) Organic mulch impact on vegetation dynamics and productivity of highbush blueberry under organic production. Hort Sci 44(3):688–696. https://doi.org/10.21273/HORTSCI.44.3.688
Article
Google Scholar
Caspersen S, Svensson B, Håkansson T, Winter C, Khalil S, Asp H (2016) Blueberry-Soil interactions from an organic perspective. Sci Hortic 208:78–91. https://doi.org/10.1016/j.scienta.2016.04.002
Article
CAS
Google Scholar
Chen S, Zhu Y, Shao T, Long X, Gao X, Zhou Z (2019) Relationship between rhizosphere soil properties and disease severity in highbush blueberry (Vaccinium corymbosum). Appl Soil Ecol 137:187–194. https://doi.org/10.1016/j.apsoil.2019.02.015
Article
Google Scholar
Chou MY, Heuvel JV, Bell TH, Buisse KP, Kniffin JK (2018) Vineyard under-vine floor management alters soil microbial composition, while the fruit microbiome shows no corresponding shifts. Sci Rep 8:11039. https://doi.org/10.1038/s41598-018-29346-1
Article
CAS
PubMed
PubMed Central
Google Scholar
Conner AM, Luby JJ, Hancock JF, Berkheimer S, Hanson EJ (2002) Changes in fruit antioxidant activity among blueberry cultivars during cold-temperature storage. J Agri Food Chem 50(4):893–898. https://doi.org/10.1021/jf011212y
Article
CAS
Google Scholar
Dhariwal A, Chong J, Habib S, King IL, Agellon LB, Xia J (2017) MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res 45:W180–W188. https://doi.org/10.1093/nar/gkx295
Article
CAS
PubMed
PubMed Central
Google Scholar
Foulon J, Zappelini C, Durand A, Valot B, Blaudez D, Chalot M (2016) Impact of poplar-based phytomanagement on soil properties and microbial communities in a metal-contaminated site. FEMS Microbiol Ecol 92(10):fiw163. https://doi.org/10.1093/femsec/fiw163
Article
CAS
PubMed
Google Scholar
Gilbert JA, Jansson JK, Knight R (2014) The Earth Microbiome project: successes and aspirations. BMC Biol 12:69. https://doi.org/10.1186/s12915-014-0069-1
Article
CAS
PubMed
PubMed Central
Google Scholar
Grady EN, MacDonald J, Liu L, Richman A, Yuan ZC (2016) Current knowledge and perspectives of Paenibacillus: a review. Micro Cell Factories 15:203. https://doi.org/10.1186/s12934-016-0603-7
Article
Google Scholar
Johnson MH, Lucius A, Meyer T, Gonzalez de Mejia E (2011) Cultivar evaluation and effect of fermentation on antioxidant capacity and in vitro inhibition of α-amylase and α-glucosidase by highbush blueberry (Vaccinium corombosum). J Agri Food Chem 59(16):8923–8930. https://doi.org/10.1021/jf201720z
Article
CAS
Google Scholar
Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163(3):459–480. https://doi.org/10.1111/j.1469-8137.2004.01130.x
Article
CAS
PubMed
Google Scholar
Julian JW, Strik BC, Larco HO, Bryla DR, Sullivan DM (2012) Costs of establishing organic northern highbush blueberry: Impacts of planting method, fertilization, and mulch type. Hort Sci 47(7):866–873. https://doi.org/10.21273/HORTSCI.47.7.866
Article
Google Scholar
Kalt W, Mcdonald JE, Donner H (2000) Anthocyanins, phenolics, and antioxidant capacity of processed lowbush blueberry products. J Food Sci 65(3):390–393. https://doi.org/10.1111/j.1365-2621.2000.tb16013.x
Article
CAS
Google Scholar
Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T, Sasamoto S, Watanabe A, Idesawa K, Iriguchi M, Kawashima K, Kohara M, Matsumoto M, Shimpo S, Tsuruoka H, Wada T, Yamada M, Tabata S (2002) Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res 9(6):189–197. https://doi.org/10.1093/dnares/9.6.189
Article
PubMed
Google Scholar
Kang J, Thakali KM, Gitte SJ, Wu X (2015) Phenolic acids of the two major blueberry species in the US market and their antioxidant and anti-inflammatory activities. Plant Foods Hum Nutr 70(1):56–62. https://doi.org/10.1007/s11130-014-0461-6
Article
CAS
PubMed
Google Scholar
Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79(17):5112–5120. https://doi.org/10.1128/AEM.01043-13
Article
CAS
PubMed
PubMed Central
Google Scholar
Krewer G, Tertuliano M, Andersen P, Liburd O, Fonsah G, Serri H, Mullinix B (2008) Effect of mulches on the establishment of organically grown blueberries in Georgia. Acta Hort 810:483–488. https://doi.org/10.17660/ActaHortic.2009.810.63
Article
Google Scholar
Lakshmanan V, Selvaraj G, Bais HP (2014) Functional soil microbiome: belowground solutions to an aboveground problem. Plant Physiol 166:689–700. https://doi.org/10.1104/pp.114.245811
Article
CAS
PubMed
PubMed Central
Google Scholar
Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Thurber RLV, Knight R, Beiko RG, Huttenhower C (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821. https://doi.org/10.1038/nbt.2676
Article
CAS
PubMed
PubMed Central
Google Scholar
Larco H, Strik B, Sullivan D, Bryla D (2011) Mulch effects on highbush blueberry under organic management. Acta Hort 1018:375–382. https://doi.org/10.17660/ActaHortic.2014.1018.40
Article
Google Scholar
Loon FJ, Ling H, Lee YS, Chang MW (2017) Microbiome engineering: current applications and its future. Biotechnol J 12(3):1600099. https://doi.org/10.1002/biot.201600099
Article
CAS
Google Scholar
Moe LA (2013) Amino acids in the rhizosphere: from plants to microbes. Am J Bot 100(9):1692–1705. https://doi.org/10.3732/ajb.1300033
Article
CAS
PubMed
Google Scholar
Moncada A, Miceli A, Vetrano F (2021) Use of plant growth-promoting rhizobacteria (PGPR) and organic fertilization for soilless cultivation of basil. Sci Hort 275(3):109733. https://doi.org/10.1016/j.scienta.2020.109733
Article
CAS
Google Scholar
Strik BC, Davis AJ (2021) Individual and combined use of sawdust and weed mat mulch in a new planting of northern highbush blueberry. III. Yield, fruit quality, and costs. Hort Sci 56(3):363–367. https://doi.org/10.21273/HORTSCI15659-20
Article
Google Scholar
Strik BC, Davis AJ, Bryla DR, Orr ST (2020) Individual and combined use of sawdust and weed mat mulch in a new planting of northern highbush blueberry I. Impacts on plant growth and soil and canopy temperature. Hort Sci 55(8):1280–1287. https://doi.org/10.21273/HORTSCI15122-20
Article
CAS
Google Scholar
Strik BC, Vance A, Bryla DR, Sullivan DM (2017) Organic production systems in northern highbush blueberry: I. Impact of planting method, cultivar, fertilizer, and mulch on yield and fruit quality from planting through maturity. Hort Sci 52(9):1201–1213. https://doi.org/10.21273/HORTSCI12179-17
Article
CAS
Google Scholar
Strik BC, Davis AJ, Bryla DR, Sullivan DM (2019) Organic production systems in northern highbush blueberry: II. Impact of planting method, cultivar, fertilizer, and mulch on leaf and soil nutrient concentrations and relationships with yield from planting through maturity. Hort Sci 54(10):1777–1794. https://doi.org/10.21273/HORTSCI14197-19
Article
CAS
Google Scholar
Timmusk S, Behers L, Muthoni J, Muraya A, Aronsson AC (2017) Perspectives and challenges of microbial application for crop improvement. Front Plant Sci 8:49. https://doi.org/10.3389/fpls.2017.00049
Article
PubMed
PubMed Central
Google Scholar
Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A (2015) The importance of the microbiome of the plant holobiont. New Phytol 206(4):1196–1206. https://doi.org/10.1111/nph.13312
Article
PubMed
Google Scholar
Wan C, Yuan T, Cirello AL, Seeram NP (2012) Antioxidant and α-glucosidase inhibitory phenolics isolated from highbush blueberry flowers. Food Chem 135(3):1929–1937. https://doi.org/10.1016/j.foodchem.2012.06.056
Article
CAS
PubMed
Google Scholar
Wang Y, Liu L, Luo Y, Awasthi MK, Yang J, Duan Y, Li H, Zhao Z (2020) Mulching practices alter the bacterial-fungal community and network in favor of soil quality in a semiarid orchard system. Sci Total Environ 725:138527. https://doi.org/10.1016/j.scitotenv.2020.138527
Article
CAS
PubMed
Google Scholar
Wang H, Guo X, Hu X, Li T, Fu X, Liu RH (2017) Comparison of phytochemical profiles, antioxidant and cellular antioxidant activities of different varieties of blueberry (Vaccinium spp.). Food Chem 217:773–781. https://doi.org/10.1016/j.foodchem.2016.09.002
Article
CAS
PubMed
Google Scholar
Wani PA, Khan MS (2010) Bacillus species enhance growth parameters of chickpea (Cicer arietinum L.) in chromium stressed soils. Food Chem Toxicol 48(11):3262–3267. https://doi.org/10.1016/j.fct.2010.08.035
Article
CAS
PubMed
Google Scholar
Yurgel SN, Douglas GM, Comeau AM, Mammoliti M, Dusault A, Percival D, Langille MGL (2017) Variation in bacterial and eukaryotic communities associated with natural and managed wild blueberry habitats. Phytobiomes J 1(2):102–113. https://doi.org/10.1094/PBIOMES-03-17-0012-R
Article
Google Scholar