Abu Laban N, Dao A, Semple K, Foght J (2015) Biodegradation of C7 and C8 iso-alkanes under methanogenic conditions. Environ Microbiol 17(12):4898–4915. https://doi.org/10.1111/1462-2920.12643
Article
CAS
PubMed
Google Scholar
Agrawal A, Gieg LM (2013) In situ detection of anaerobic alkane metabolites in subsurface environments. Front Microbiol 4:140. https://doi.org/10.3389/fmicb.2013.00140
Article
PubMed
PubMed Central
Google Scholar
Aitken CM, Jones DM, Maguire MJ, Gray ND, Sherry A, Bowler BFJ, Ditchfield AK, Larter SR, Head IM (2013) Evidence that crude oil alkane activation proceeds by different mechanisms under sulfate-reducing and methanogenic conditions. Geochim Cosmochim Ac 109:162–174. https://doi.org/10.1016/j.gca.2013.01.031
Article
CAS
Google Scholar
Amos RT, Mayer KU, Bekins BA, Delin GN, Williams RL (2005) Use of dissolved and vapor-phase gases to investigate methanogenic degradation of petroleum hydrocarbon contamination in the subsurface. Water Resour Res. https://doi.org/10.1029/2004wr003433
Article
Google Scholar
Bian XY, Mbadinga SM, Yang SZ, Gu JD, Ye RQ, Mu BZ (2014) Synthesis of anaerobic degradation biomarkers alkyl-, aryl- and cycloalkylsuccinic acids and their mass spectral characteristics. Eur J Mass Spectrom 20(4):287–297. https://doi.org/10.1255/ejms.1280
Article
CAS
Google Scholar
Bian XY, Mbadinga SM, Liu YF, Yang SZ, Liu JF, Ye RQ, Gu JD, Mu BZ (2015) Insights into the anaerobic biodegradation pathway of n-alkanes in oil reservoirs by detection of signature metabolites. Sci Rep 5:9801. https://doi.org/10.1038/srep09801
Article
CAS
PubMed
PubMed Central
Google Scholar
Callaghan AV (2013) Enzymes involved in the anaerobic oxidation of n-alkanes: from methane to long-chain paraffins. Front Microbiol 4:89. https://doi.org/10.3389/fmicb.2013.00089
Article
PubMed
PubMed Central
Google Scholar
Callaghan AV, Davidova IA, Savage-Ashlock K, Parisi VA, Gieg LM, Suflita JM, Kukor JJ, Wawrik B (2010) Diversity of benzyl- and alkylsuccinate synthase genes in hydrocarbon-impacted environments and enrichment cultures. Environ Sci Technol 44(19):7287–7294. https://doi.org/10.1021/es1002023
Article
CAS
PubMed
Google Scholar
Casamayor EO, Massana R, Benlloch S, Øvreås L, Díez B, Goddard VJ, Gasol JM, Joint I, Rodríguez-Valera F, Pedrós-Alió C (2002) Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern. Environmen Microbiol 4(6):338–348. https://doi.org/10.1046/j.1462-2920.2002.00297.x
Article
Google Scholar
Cheng L, Ding C, Li Q, He Q, Dai LR, Zhang H (2013) DNA-SIP reveals that Syntrophaceae play an important role in methanogenic hexadecane degradation. PLoS ONE 8(7):e66784. https://doi.org/10.1371/journal.pone.0066784
Article
CAS
PubMed
PubMed Central
Google Scholar
Duncan KE, Gieg LM, Parisi VA, Tanner RS, Tringe SG, Bristow J, Suflita JM (2009) Biocorrosive thermophilic microbial communities in Alaskan North Slope oil facilities. Environ Sci Technol 43(20):7977–7984
Article
CAS
Google Scholar
Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10(10):996–998. https://doi.org/10.1038/nmeth.2604
Article
CAS
Google Scholar
Embree M, Nagarajan H, Movahedi N, Chitsaz H, Zengler K (2014) Single-cell genome and metatranscriptome sequencing reveal metabolic interactions of an alkane-degrading methanogenic community. ISME J 8(4):757–767. https://doi.org/10.1038/ismej.2013.187
Article
CAS
PubMed
Google Scholar
Feisthauer S, Siegert M, Seidel M, Richnow HH, Zengler K, Gründger F, Krüger M (2010) Isotopic fingerprinting of methane and CO2 formation from aliphatic and aromatic hydrocarbons. Org Geochem 41(5):482–490. https://doi.org/10.1016/j.orggeochem.2010.01.003
Article
CAS
Google Scholar
Feisthauer S, Seidel M, Bombach P, Traube S, Knöller K, Wange M, Fachmann S, Richnow HH (2012) Characterization of the relationship between microbial degradation processes at a hydrocarbon contaminated site using isotopic methods. J Contam Hydrol 133:17–29. https://doi.org/10.1016/j.jconhyd.2012.03.001
Article
CAS
PubMed
Google Scholar
Gieg LM, Duncan KE, Suflita JM (2008) Bioenergy production via microbial conversion of residual oil to natural gas. Appl Environ Microbiol 74(10):3022–3029. https://doi.org/10.1128/AEM.00119-08
Article
CAS
PubMed
PubMed Central
Google Scholar
Gieg LM, Davidova IA, Duncan KE, Suflita JM (2010) Methanogenesis, sulfate reduction and crude oil biodegradation in hot Alaskan oilfields. Environ Microbiol 12(11):3074–3086. https://doi.org/10.1111/j.1462-2920.2010.02282.x
Article
CAS
PubMed
Google Scholar
Gray ND, Sherry A, Grant RJ, Rowan AK, Hubert CR, Callbeck CM, Aitken CM, Jones DM, Adams JJ, Larter SR, Head IM (2011) The quantitative significance of Syntrophaceae and syntrophic partnerships in methanogenic degradation of crude oil alkanes. Environ Microbiol 13(11):2957–2975. https://doi.org/10.1111/j.1462-2920.2011.02570.x
Article
CAS
PubMed
PubMed Central
Google Scholar
Head IM, Jones DM, Larter SR (2003) Biological activity in the deep subsurface and the origin of heavy oil. Nature 426(6964):344–352. https://doi.org/10.1038/nature02134
Article
CAS
PubMed
Google Scholar
Head IM, Jones DM, Roling WF (2006) Marine microorganisms make a meal of oil. Nat Rev Microbiol 4(3):173–182. https://doi.org/10.1038/nrmicro1348
Article
CAS
PubMed
Google Scholar
Huang Y, Niu B, Gao Y, Fu L, Li W (2010) CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics 26(5):680–682. https://doi.org/10.1093/bioinformatics/btq003
Article
CAS
PubMed
PubMed Central
Google Scholar
Ji JH, Liu YF, Zhou L, Mbadinga SM, Pan P, Chen J, Liu JF, Yang SZ, Sand W, Gu JD, Mu BZ (2019) Methanogenic degradation of long n-alkanes requires fumarate-dependent activation. Appl Environ Microbiol. https://doi.org/10.1128/aem.00985-19
Article
PubMed
Google Scholar
Jones DM, Head IM, Gray ND, Adams JJ, Rowan AK, Aitken CM, Bennett B, Huang H, Brown A, Bowler BF, Oldenburg T, Erdmann M, Larter SR (2008) Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature 451(7175):176–180. https://doi.org/10.1038/nature06484
Article
CAS
PubMed
Google Scholar
Kniemeyer O, Musat F, Sievert SM, Knittel K, Wilkes H, Blumenberg M, Michaelis W, Classen A, Bolm C, Joye SB, Widdel F (2007) Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria. Nature 449(7164):898–901. https://doi.org/10.1038/nature06200
Article
CAS
PubMed
Google Scholar
Kropp KG, Davidova IA, Suflita JM (2000) Anaerobic oxidation of n-dodecane by an addition reaction in a sulfate-reducing bacterial enrichment culture. Appl Environ Microbiol 66(12):5393–5398
Article
CAS
Google Scholar
Liang B, Wang LY, Mbadinga SM, Liu JF, Yang SZ, Gu JD, Mu BZ (2015) Anaerolineaceae and Methanosaeta turned to be the dominant microorganisms in alkanes-dependent methanogenic culture after long-term of incubation. AMB Express 5(1):117. https://doi.org/10.1186/s13568-015-0117-4
Article
CAS
PubMed
Google Scholar
Liang B, Wang LY, Zhou Z, Mbadinga SM, Zhou L, Liu JF, Yang SZ, Gu JD, Mu BZ (2016) High frequency of Thermodesulfovibrio spp. and Anaerolineaceae in association with Methanoculleus spp. in a long-term incubation of n-alkanes-degrading methanogenic enrichment culture. Front Microbiol 7:1431. https://doi.org/10.3389/fmicb.2016.01431
Article
PubMed
PubMed Central
Google Scholar
Luton PE, Wayne JM, Sharp RJ, Riley PW (2002) The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology 148:3521–3530. https://doi.org/10.1099/00221287-148-11-3521
Article
CAS
PubMed
Google Scholar
Ma L, Zhou L, Mbadinga SM, Gu JD, Mu BZ (2018) Accelerated CO2 reduction to methane for energy by zero valent iron in oil reservoir production waters. Energy 147:663–671. https://doi.org/10.1016/j.energy.2018.01.087
Article
CAS
Google Scholar
Mohamad Shahimin MF, Siddique T (2017) Methanogenic biodegradation of paraffinic solvent hydrocarbons in two different oil sands tailings. Sci Total Environ 583:115–122. https://doi.org/10.1016/j.scitotenv.2017.01.038
Article
CAS
PubMed
Google Scholar
Mohamad Shahimin MF, Foght JM, Siddique T (2016) Preferential methanogenic biodegradation of short-chain n-alkanes by microbial communities from two different oil sands tailings ponds. Sci Total Environ 553:250–257. https://doi.org/10.1016/j.scitotenv.2016.02.061
Article
CAS
PubMed
Google Scholar
Oberding LK, Gieg LM (2018) Methanogenic paraffin biodegradation: alkylsuccinate synthase gene quantification and dicarboxylic acid production. Appl Environ Microbiol 84(1):e01773. https://doi.org/10.1128/AEM.01773-17
Article
PubMed
Google Scholar
Qin QS, Feng DS, Liu PF, He Q, Li X, Liu AM, Zhang H, Hu GQ, Cheng L (2017) Metagenomic characterization of Candidatus Smithella cisternae Strain M82_1, a syntrophic alkane-degrading bacteria, enriched from the Shengli Oil Field. Microbes Environ 32(3):234–243. https://doi.org/10.1264/jsme2.ME17022
Article
PubMed
PubMed Central
Google Scholar
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. https://doi.org/10.1093/nar/gks1219
Article
PubMed
PubMed Central
Google Scholar
Rabus R, Wilkes H, Behrends A, Armstroff A, Fischer T, Pierik AJ, Widdel F (2001) Anaerobic initial reaction of n-alkanes in a denitrifying bacterium: evidence for (1-methylpentyl)succinate as initial product and for involvement of an organic radical in n-hexane metabolism. J Bacteriol 183(5):1707–1715. https://doi.org/10.1128/JB.183.5.1707-1715.2001
Article
CAS
PubMed
PubMed Central
Google Scholar
Sherry A, Grant RJ, Aitken CM, Jones DM, Head IM, Gray ND (2014) Volatile hydrocarbons inhibit methanogenic crude oil degradation. Front Microbiol 5:131. https://doi.org/10.3389/fmicb.2014.00131
Article
PubMed
PubMed Central
Google Scholar
Siddique T, Penner T, Semple K, Foght JM (2011) Anaerobic biodegradation of longer-chain n-alkanes coupled to methane production in oil sands tailings. Environ Sci Technol 45(13):5892–5899. https://doi.org/10.1021/es200649t
Article
CAS
PubMed
Google Scholar
Siddique T, Mohamad Shahimin MF, Zamir S, Semple K, Li C, Foght JM (2015) Long-term incubation reveals methanogenic biodegradation of C5 and C6 iso-alkanes in oil sands tailings. Environ Sci Technol 49(24):14732–14739. https://doi.org/10.1021/acs.est.5b04370
Article
CAS
PubMed
Google Scholar
Tan B, Dong X, Sensen CW, Foght J (2013) Metagenomic analysis of an anaerobic alkane-degrading microbial culture: potential hydrocarbon-activating pathways and inferred roles of community members. Genome 56(10):599–611. https://doi.org/10.1139/gen-2013-0069
Article
CAS
PubMed
Google Scholar
Tan B, Charchuk R, Li C, Nesbø C, Abu Laban N, Foght J (2014) Draft genome sequence of uncultivated Firmicutes (Peptococcaceae SCADC) single cells sorted from methanogenic alkane-degrading cultures. Genome Announc. https://doi.org/10.1128/genomea.00909-14
Article
PubMed
PubMed Central
Google Scholar
Tan B, Semple K, Foght J (2015) Anaerobic alkane biodegradation by cultures enriched from oil sands tailings ponds involves multiple species capable of fumarate addition. FEMS Microbiol Ecol. https://doi.org/10.1093/femsec/fiv042
Article
PubMed
Google Scholar
Toth CRA, Gieg LM (2017) Time course-dependent methanogenic crude oil biodegradation: dynamics of fumarate addition metabolites, biodegradative genes, and microbial community composition. Front Microbiol 8:2610. https://doi.org/10.3389/fmicb.2017.02610
Article
PubMed
Google Scholar
Wang LY, Gao CX, Mbadinga SM, Zhou L, Liu JF, Gu JD, Mu BZ (2011) Characterization of an alkane-degrading methanogenic enrichment culture from production water of an oil reservoir after 274 days of incubation. Int Biodeter Biodegr 65(3):444–450. https://doi.org/10.1016/j.ibiod.2010.12.010
Article
CAS
Google Scholar
Wawrik B, Marks CR, Davidova IA, McInerney MJ, Pruitt S, Duncan KE, Suflita JM, Callaghan AV (2016) Methanogenic paraffin degradation proceeds via alkane addition to fumarate by ‘Smithella’ spp. mediated by a syntrophic coupling with hydrogenotrophic methanogens. Environ Microbiol 18(8):2604–2619. https://doi.org/10.1111/1462-2920.13374
Article
CAS
PubMed
Google Scholar
Wilkes H, Rabus R, Fischer T, Armstroff A, Behrends A, Widdel F (2002) Anaerobic degradation of n-hexane in a denitrifying bacterium: further degradation of the initial intermediate (1-methylpentyl)succinate via C-skeleton rearrangement. Arch Microbiol 177(3):235–243. https://doi.org/10.1007/s00203-001-0381-3
Article
CAS
PubMed
Google Scholar
Xiong J, Liu Y, Lin X, Zhang H, Zeng J, Hou J, Yang Y, Yao T, Knight R, Chu H (2012) Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau. Environ Microbiol 14(9):2457–2466. https://doi.org/10.1111/j.1462-2920.2012.02799.x
Article
CAS
PubMed
PubMed Central
Google Scholar
Zengler K, Richnow HH, Rosselló-Mora R, Michaelis W, Widdel F (1999) Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 401(6750):266–269. https://doi.org/10.1038/45777
Article
CAS
PubMed
Google Scholar
Zhou L, Li KP, Mbadinga SM, Yang SZ, Gu JD, Mu BZ (2012) Analyses of n-alkanes degrading community dynamics of a high-temperature methanogenic consortium enriched from production water of a petroleum reservoir by a combination of molecular techniques. Ecotoxicology 21(6):1680–1691. https://doi.org/10.1007/s10646-012-0949-5
Article
CAS
PubMed
Google Scholar