Alam F, Mobin S, Chowdhury H (2015) Third generation biofuel from Algae. Procedia Eng 105:763–768
Article
CAS
Google Scholar
Bellido C, Infante C, Coca M, González-Benito G, Lucas S, García-Cubero MT (2015) Efficient acetone–butanol–ethanol production by Clostridium beijerinckii from sugar beet pulp. Biores Technol 190:332–338
Article
CAS
Google Scholar
Beukes N, Chan H, Doi RH, Pletschke BI (2008) Synergistic associations between Clostridium cellulovorans enzymes XynA, ManA and EngE against sugarcane bagasse. Enz Micro Technol 42:492–498
Article
CAS
Google Scholar
Brethauer S, Studer M (2015) Biochemical conversion processes of lignocellulosic biomass to fuels and chemicals—a review. Chimia 69:572–581
Article
CAS
Google Scholar
Charlson ES, Chen J, Custers-Allen R, Bittinger K, Li H, Sinha R, Hwang J, Bushman FD, Collman RG (2010) Disordered microbial communities in the upper respiratory tract of cigarette smokers. PLoS ONE 5(12):e15216
Article
CAS
Google Scholar
Deppenmeier U, Müller V, Gottschalk G (1996) Pathways of energy conservation in methanogenic archaea. Arch Microbiol 165:149–163
Article
CAS
Google Scholar
Deppenmeier U, Johann A, Hartsch T, Merkl R, Schmitz RA, Martinez-Arias R, Henne A, Wiezer A, Bäumer S, Jacobi C, Brüggemann H, Lienard T, Christmann A, Bömeke M, Steckel S, Bhattacharyya A, Lykidis A, Overbeek R, Klenk HP, Gunsalus RP, Fritz HJ, Gottschalk G (2002) The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea. J Mol Microbiol Biotechnol 4:453–461
CAS
PubMed
Google Scholar
Doi RH, Kosugi A (2004) Cellulosomes: plant-cell-wall-degrading enzyme complexes. Nat Rev Microbiol 2:541–551
Article
CAS
Google Scholar
Dredge R, Radloff, van Dyk JS, Pletschke BI (2011) Lime pretreatment of sugar beet pulp and evaluation of synergy between ArfA, ManA and XynA from Clostridium cellulovorans on the pretreated substrate. 3 Biotech 1:151–159
Article
Google Scholar
Esaka K, Aburaya S, Morisaka H, Kuroda K, Ueda M (2015) Exoproteome analysis of Clostridium cellulovorans in natural soft-biomass degradation. AMB Express 5:2
Article
Google Scholar
FAO—agribusiness handbook: white sugar. Food and Agriculture Organization of the United Nations (2013). (https://www.slideshare.net/hlarrea/fao-agribusiness-handbook-white-sugar)
Fournier GP, Gogarten JP (2007) Evolution of acetoclastic methanogenesis in methanosarcina via horizontal gene transfer from cellulolytic clostridia. J Bacteriol 190:1124–1127
Article
Google Scholar
Garcia JL, Patel BKC, Ollivier B (2000) Taxonomic, phylogenetic, and ecological diversity of methanogenic Archaea. Anaerobe 6:205–226
Article
CAS
Google Scholar
Gray KA, Zhao L, Emptage M (2006) Bioethanol. Curr Opin Chem Biol 10:141–146
Article
CAS
Google Scholar
Guo J, Peng Y, Ni BJ, Han X, Fan L, ZhiGuo Y (2015) Dissecting microbial community structure and methane-producing pathways of a full-scale anaerobic reactor digesting activated sludge from wastewater treatment by metagenomic sequencing. Microb Cell Fact 14:33
Article
Google Scholar
Hadden G, Klas H, Per Å (1986) The influence of wheat bran and sugar-beet pulp on the digestibility of dietary components in a cereal-based pig diet. J Nutr 116:242–251
Article
Google Scholar
Hattori S (2008) Syntrophic acetate-oxidizing microbes in methanogenic environments. Microbes Environ 23:118–127
Article
Google Scholar
Koukiekolo R, Cho HY, Kosugi A, Inui M, Yukawa H, Doi RH (2005) Degradation of corn fiber by Clostridium cellulovorans cellulases and hemicellulases and contribution of scaffolding protein CbpA. Appl Environ Microbiol 71(7):3504–3511
Article
CAS
Google Scholar
Lu H, Ng SK, Jia Y, Lee PKH (2017) Physiological and molecular characterizations of the interactions in two cellulose-to-methane cocultures. Biotechnol Biofuels 10:37
Article
Google Scholar
Maeder DL, Anderson I, Brettin TS, Bruce DC, Gilna P, Han CS, Lapidus A, Metcalf WW, Saunders E, Tapia R, Sowers KR (2006) The Methanosarcina barkeri genome: comparative analysis with Methanosarcina acetivorans and Methanosarcina mazei reveals extensive rearrangement within methanosarcinal genomes. J Bacteriol 188:7922–7931
Article
CAS
Google Scholar
Matsui K, Bae J, Esaka K, Morisaka H, Kuroda K, Ueda M (2013) Exoproteome profiles of Clostridium cellulovorans on various carbon sources. Appl Environ Microbiol 79:6576–6584
Article
CAS
Google Scholar
Miroslav H, Miloslav D, Mrafkova L (2000) Anaerobic biodegradation of sugar beet pulp. Biodegradation 11:203–211
Article
Google Scholar
Miyake H, Maeda Y, Ishikawa T, Tanaka A (2016) Calorimetric studies of the growth of anaerobic microbes. J Biosci Bioengin 122(3):364–369
Article
CAS
Google Scholar
Naik SN, Goud VV, Rout PK, Dalaib AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sustain Energy Rev 14:578–597
Article
CAS
Google Scholar
Nakajima D, Shibata T, Tanaka R, Kuroda K, Ueda M, Miyake H (2017) Characterization of the cellulosomal scaffolding protein CbpC from Clostridium cellulovorans 743B. J Biosci Bioengin 124:376–380
Article
CAS
Google Scholar
Nickel L, Weidenbach K, Jäger D, Backofen R, Lange SJ, Heidrich N, Schmitz RA (2013) Two CRISPR-Cas systems in Methanosarcina mazei strain Gö1 display common processing features despite belonging to different types I and III. RNA Biol 10:779–791
Article
CAS
Google Scholar
Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. BioEnergy Res 1:20–43
Article
Google Scholar
Shinohara M, Sakuragi H, Morisaka H, Miyake H, Tamaru Y, Fukusaki E, Kuroda K, Ueda M (2013) Fixation of CO2 in Clostridium cellulovorans analyzed by 13C-isotopomer-based target metabolomics. AMB Express 3:61
Article
Google Scholar
Sleat R, Mah RA, Robinson R (1984) Isolation and characterization of an anaerobic, cellulolytic bacterium, Clostridium cellulovorans sp. nov. Appl Environ Microbiol 48:88–93
CAS
PubMed
PubMed Central
Google Scholar
Spang A, Caceres EF, Ettema TJG (2017) Genomic exploration of the diversity, ecology, and evolution of the archaeal domain of life. Science 357(6351):eaaf3883
Article
Google Scholar
Tamaru Y, Ui S, Murashima K, Kosugi A, Chan H, Doi RH, Liu B (2002) Formation of protoplasts from cultured tobacco cells and Arabidopsis thaliana by the action of cellulosomes and pectate lyase from Clostridium cellulovorans. Appl Environ Microbiol 68(5):2614–2618
Article
CAS
Google Scholar
Tamaru Y, Miyake H, Kuroda K, Ueda M, Doi RH (2010) Comparative genomics of the mesophilic cellulosome‐producing Clostridium cellulovorans and its application to biofuel production via consolidated bioprocessing. Environ Technol 31:889–903
Article
CAS
Google Scholar
Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6:579–591
Article
CAS
Google Scholar
Youngblut ND, Wirth JS, Henriksen JR, Smith M, Simon H, Metcalf WW, Whitaker RJ (2015) Genomic and phenotypic differentiation among Methanosarcina mazei populations from Columbia River sediment. ISME J 9(10):2191–2205
Article
Google Scholar
Zheng Y, Lee C, Yu C, Cheng YS, Zhang R, Jenkins BM, VanderGheynst JS (2013) Dilute acid pretreatment and fermentation of sugar beet pulp to ethanol. Appl Energy 105:1–7
Article
CAS
Google Scholar
Ziemiński K, Romanowska I, Kowalska-Wentel M, Cyran M (2014) Effects of hydrothermal pretreatment of sugar beet pulp for methane production. Bioresour Technol 166:187–193
Article
Google Scholar