Acedos MG, Santos VE, Garcia-Ochoa F (2018) Resting cells isobutanol production by Shimwellia blattae (p424IbPSO): influence of growth culture conditions. Biotechnol Prog 34:1073–1080. https://doi.org/10.1002/btpr.2705
Article
CAS
PubMed
Google Scholar
Alegbeleye OO, Opeolu BO, Jackson VA (2017) Polycyclic aromatic hydrocarbons: a critical review of environmental occurrence and bioremediation. Environ Manage 60:758–783. https://doi.org/10.1007/s00267-017-0896-2
Article
PubMed
Google Scholar
Alharbi OML, Basheer AA, Khattab RA, Ali I (2018) Health and environmental effects of persistent organic pollutants. J Mol Liq 263:442–453. https://doi.org/10.1016/j.molliq.2018.05.029
Article
CAS
Google Scholar
Dangi AK, Sharma B, Hill RT, Shukla P (2019) Bioremediation through microbes: systems biology and metabolic engineering approach. Crit Rev Biotechnol 39:79–98. https://doi.org/10.1080/07388551.2018.1500997
Article
CAS
Google Scholar
de Campos Ventura-Camargo B, de Angelis DD, Marin-Morales MA (2016) Assessment of the cytotoxic, genotoxic and mutagenic effects of the commercial black dye in Allium cepa cells before and after bacterial biodegradation treatment. Chemosphere 161:325–332. https://doi.org/10.1016/j.chemosphere.2016.06.085
Article
CAS
Google Scholar
Ghosal D, Ghosh S, Dutta TK, Ahn Y (2016) Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review. Front Microbiol 7:1369. https://doi.org/10.3389/fmicb.2016.01369
Article
PubMed
PubMed Central
Google Scholar
Guo M, Gong Z, Allinson G, Tai P, Miao R, Li X, Jia C, Zhuang J (2016) Variations in the bioavailability of polycyclic aromatic hydrocarbons in industrial and agricultural soils after bioremediation. Chemosphere 144:1513–1520. https://doi.org/10.1016/j.chemosphere.2015.10.027
Article
CAS
PubMed
Google Scholar
Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15. https://doi.org/10.1016/j.jhazmat.2009.03.137
Article
CAS
PubMed
Google Scholar
Jia X, Wen JP, Sun ZP, Caiyin QG, Xie SP (2006) Modeling of DBT biodegradation behaviors by resting cells of Gordonia sp. WQ-01 and its mutant in oil–water dispersions. Chem Eng Sci 61:1987–2000. https://doi.org/10.1016/j.ces.2005.10.045
Article
CAS
Google Scholar
Johnsen AR, Karlson U (2007) Diffuse PAH contamination of surface soils: environmental occurrence, bioavailability, and microbial degradation. Appl Microbiol Biotechnol 76:533–543. https://doi.org/10.1007/s00253-007-1045-2
Article
CAS
PubMed
Google Scholar
Kirimura K, Nakagawa H, Tsuji K, Matsuda K, Kurane R, Usami S (1999) Selective and continuous degradation of carbazole contained in petroleum oil by resting cells of Sphingomonas sp. CDH-7. Biosci Biotechnol Biochem 63:1563–1568. https://doi.org/10.1271/bbb.63.1563
Article
CAS
PubMed
Google Scholar
Laha S, Luthy RG (1991) Inhibition of phenanthrene mineralization by nonionic surfactants in soil–water systems. Environ Sci Technol 25:1920–1930
Article
CAS
Google Scholar
Lamichhane S, Krishna KCB, Sarukkalige R (2017) Surfactant-enhanced remediation of polycyclic aromatic hydrocarbons: a review. J Environ Manage 199:46–61. https://doi.org/10.1016/j.jenvman.2017.05.037
Article
CAS
PubMed
Google Scholar
Li J-L, Chen B-H (2009) Surfactant-mediated biodegradation of polycyclic aromatic hydrocarbons. Materials 2:76–94. https://doi.org/10.3390/ma2010076
Article
CAS
PubMed Central
Google Scholar
Liu Y, Zeng G, Zhong H, Wang Z, Liu Z, Cheng M, Liu G, Yang X, Liu S (2017) Effect of rhamnolipid solubilization on hexadecane bioavailability: enhancement or reduction? J Hazard Mater 322:394–401. https://doi.org/10.1016/j.jhazmat.2016.10.025
Article
CAS
PubMed
Google Scholar
Maletić SP, Beljin JM, Rončević SD, Grgić MG, Dalmacija BD (2019) State of the art and future challenges for polycyclic aromatic hydrocarbons is sediments: sources, fate, bioavailability and remediation techniques. J Hazard Mater 365:467–482. https://doi.org/10.1016/j.jhazmat.2018.11.020
Article
CAS
PubMed
Google Scholar
Miller R (1995) Surfactant-enhanced bioavailability of slightly soluble organic compounds. In: Skipper H, Turco R (eds) Bioremediation: science and applications. Soil Science Society of America, Madison, pp 33–54 (Special publication)
Google Scholar
Nakagawa H, Kirimura K, Nitta T, Kino K, Kurane R, Usami S (2002) Recycle use of Sphingomonas sp. CDH-7 cells for continuous degradation of carbazole in the presence of MgCl2. Curr Microbiol 44:251–256. https://doi.org/10.1007/s00284-001-0034-4
Article
CAS
PubMed
Google Scholar
Ortega-Calvo JJ, Alexander M (1994) Roles of bacterial attachment and spontaneous partitioning in the biodegradation of naphthalene initially present in nonaqueous-phase liquids. Appl Environ Microbiol 60:2643–2646
CAS
PubMed
PubMed Central
Google Scholar
Pan T, Deng T, Zeng X, Dong W, Yu S (2016) Extractive biodegradation and bioavailability assessment of phenanthrene in the cloud point system by Sphingomonas polyaromaticivorans. Appl Microbiol Biotechnol 100:431–437. https://doi.org/10.1007/s00253-015-6980-8
Article
CAS
PubMed
Google Scholar
Pan T, Liu C, Xin Q, Xu M, Deng Y, Dong W, Yu S (2017a) Extractive biodegradation of diphenyl ethers in a cloud point system: pollutant bioavailability enhancement and surfactant recycling. Biotechnol Bioprocess Eng 22:631–636. https://doi.org/10.1007/s12257-017-0085-4
Article
CAS
Google Scholar
Pan T, Liu C, Zeng X, Xin Q, Xu M, Deng Y, Dong W (2017b) Biotoxicity and bioavailability of hydrophobic organic compounds solubilized in nonionic surfactant micelle phase and cloud point system. Environ Sci Pollut Res 24:14795–14801. https://doi.org/10.1007/s11356-017-9076-4
Article
CAS
Google Scholar
Peng RH, Xiong AS, Xue Y, Fu XY, Gao F, Zhao W, Tian Y-S, Yao Q-H (2008) Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol Rev 32:927–955. https://doi.org/10.1111/j.1574-6976.2008.00127.x
Article
CAS
PubMed
Google Scholar
Rabodonirina S, Rasolomampianina R, Krier F, Drider D, Merhaby D, Net S, Ouddane B (2018) Degradation of fluorene and phenanthrene in PAHs-contaminated soil using Pseudomonas and Bacillus strains isolated from oil spill sites. J Environ Manage 232:1–7. https://doi.org/10.1016/j.jenvman.2018.11.005
Article
CAS
PubMed
Google Scholar
Racheva R, Rahlf AF, Wenzel D, Müller C, Kerner M, Luinstra GA, Smirnova I (2018) Aqueous food-grade and cosmetic-grade surfactant systems for the continuous countercurrent cloud point extraction. Sep Purif Technol 202:76–85. https://doi.org/10.1016/j.seppur.2018.03.040
Article
CAS
Google Scholar
Stelmack PL, Gray MR, Pickard MA (1999) Bacterial adhesion to soil contaminants in the presence of surfactants. Appl Environ Microbiol 65:163–168
CAS
PubMed
PubMed Central
Google Scholar
Trellu C, Mousset E, Pechaud Y, Huguenot D, van Hullebusch ED, Esposito G, Oturan MA (2016) Removal of hydrophobic organic pollutants from soil washing/flushing solutions: a critical review. J Hazard Mater 306:149–174. https://doi.org/10.1016/j.jhazmat.2015.12.008
Article
CAS
PubMed
Google Scholar
Wang Z, Zhao F, Chen D, Li D (2006) Biotransformation of phytosterol to produce androsta-diene-dione by resting cells of Mycobacterium in cloud point system. Process Biochem 41:557–561. https://doi.org/10.1016/j.procbio.2005.09.014
Article
CAS
Google Scholar
Wang Z, Xu JH, Chen D (2008) Whole cell microbial transformation in cloud point system. J Ind Microbiol Biotechnol 35:645–656. https://doi.org/10.1007/s10295-008-0345-6
Article
CAS
PubMed
Google Scholar
Wang B, Zhang X, Wu Z, Wang Z (2016) Biosynthesis of Monascus pigments by resting cell submerged culture in nonionic surfactant micelle aqueous solution. Appl Microbiol Biotechnol 100:7083–7089. https://doi.org/10.1007/s00253-016-7434-7
Article
CAS
PubMed
Google Scholar
Xiao P, You T, Song Y, Wang J (2014) Effects of biosurfactant rhamnolipid on biodegradation of DDTs by white rot fungus. Huanjing Kexue Yu Jishu 37:29–33. https://doi.org/10.3969/j.issn.1003-6504.2014.02.006
Article
CAS
Google Scholar
Zhang D, Zhu L, Li F (2013) Influences and mechanisms of surfactants on pyrene biodegradation based on interactions of surfactant with a Klebsiella oxytoca strain. Bioresour Technol 142:454–461. https://doi.org/10.1016/j.biortech.2013.05.077
Article
CAS
PubMed
Google Scholar