Atila F (2017) Evaluation of suitability of various agro-wastes for productivity of Pleurotus djamor, Pleurotus citrinopileatus and Pleurotus eryngii mushrooms. J Exp Agric Int 17(5):1–11. https://doi.org/10.9734/JEAI/2017/36346
Article
Google Scholar
Bhattacharjya DK, Paul RK, Miah MN, Ahmed KU (2015) Comparative study on nutritional composition of oyster mushroom (Pleurotus ostreatus Fr.) cultivated on different sawdust substrates. Biores Commun 1(2):93–98
Google Scholar
Bird JK, Murphy RA, Ciappio ED, McBurney MI (2017) Risk of deficiency in multiple concurrent micronutrients in children and adults in the United States. Nutrients 9(7):655. https://doi.org/10.3390/nu9070655
Article
CAS
PubMed Central
Google Scholar
Burton K, Noble R, Rogers S, Wilson J (2015) Understanding mushroom nutrition: project aimed at improving yield, substrate efficiency and utilisation and flavor. M056 Final Report. Agriculture and Horticulture Development Board (AHDB). p 54
Carrasco J, Tello ML, Pérez-Clavijo M, Preston G (2018) Biotechnological requirements for the commercial cultivation of macrofungi: substrate and casing layer, Chapter 7. In: Singh BP, Chhakchhuak L (eds) Biology of macrofungi. Springer, Berlin (in press)
Google Scholar
Carrol AD Jr, Schisler LC (1976) Delayed release nutrient supplement for mushroom culture. Appl Environ Microbiol 31:499–503
Google Scholar
Chang S, Miles PG (2004) Mushrooms: cultivation, nutritional value, medicinal effect and environmental impact, 2nd edn. CRC Press, Boca Raton. ISBN 0-8493-1043-1
Book
Google Scholar
Coello-Castillo MM, Sánchez JE, Royse DJ (2009) Production of Agaricus bisporus on substrates pre-colonized by Scytalidium thermophilum and supplemented at casing with protein-rich supplements. Bioresour Technol 100(19):4488–4492. https://doi.org/10.1016/j.biortech.2008.10.061
Article
CAS
PubMed
Google Scholar
Colmenares-Cruz S, Sánchez JE, Valle-Mora J (2017) Agaricus bisporus production on substrates pasteurized by self-heating. AMB Express 7(1):135. https://doi.org/10.1186/s13568-017-0438-6
Article
CAS
PubMed
PubMed Central
Google Scholar
Desrumaux B, Seydeyn P, Werbrouck A, Lannoy P (1999) Supplémenter dans la culture du champignon de couche: experience comparative avec quelques produits de supplementation du commerce. Bull FNSACC 81:789–802
Google Scholar
Estrada AER, Jimenez-Gasco MM, Royse DJ (2009) Improvement of yield of Pleurotus eryngii var. eryngii by substrate supplementation and use of a casing overlay. Bioresour Technol 100:5270–5276. https://doi.org/10.1016/j.biortech.2009.02.073
Article
CAS
Google Scholar
Gaitán-Hernández R, Cortés N, Mata G (2014) Improvement of yield of the edible and medicinal mushroom Lentinula edodes on wheat straw by use of supplemented spawn. Braz J Microbiol 45(2):467–474. https://doi.org/10.1590/S1517-83822014000200013
Article
PubMed
PubMed Central
Google Scholar
Goswami D, Thakker JN, Dhandhukia PC (2016) Portraying mechanics of plant growth promoting Rhizobacteria (PGPR): a review. Cogent Food Agric 2(1):1127500. https://doi.org/10.1080/23311932.2015.1127500
Article
CAS
Google Scholar
He S, Zhao K, Ma L, Yang J, Chang Y (2018) Effects of different cultivation material formulas on the growth and quality of Morchella spp. Saudi J Biol Sci 25(4):719–723. https://doi.org/10.1016/j.sjbs.2017.11.021
Article
PubMed
Google Scholar
Hoa HT, Wang CL, Wang CH (2015) The effects of different substrates on the growth, yield, and nutritional composition of two oyster mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus). Mycobiology 43(4):423–434. https://doi.org/10.5941/MYCO.2015.43.4.423
Article
PubMed
PubMed Central
Google Scholar
Jadhav AC, Shinde DB, Nadre SB, Deore DS (2014) Quality improvement of casing material and yield in milky mushroom (Calocybe indica) by using biofertilizers and different substrates. In: Proceedings of 8th international conference on mushroom biology and mushroom products (ICMBMP8). ICAR-Directorate of Mushroom Research, Solan, India. pp 359–364
Jafarpour M, Jalali A, Dehdashtizadeh B, Eghbalsaied S (2010) Evaluation of agricultural wastes and food supplements usage on growth characteristics of Pleurotus ostreatus. Afr J Agric Res 5(23):3291–3296. https://doi.org/10.5897/AJAR10.623
Article
Google Scholar
Jeyanthi Rebecca L, Seshiah C, Kowsalya E, Sharmila S (2015) Effect of food processing waste on the growth and nutrition quality of Pleurotus ostreatus. Int J Pharm Technol 7(2):8887–8893
Google Scholar
Kabel MA, Jurak E, Mäkelä MR, de Vries RP (2017) Occurrence and function of enzymes for lignocellulose degradation in commercial Agaricus bisporus cultivation. Appl Microbiol Biot 101:4363–4369. https://doi.org/10.1007/s00253-017-8294-5
Article
CAS
Google Scholar
Kertesz MA, Thai M (2018) Compost bacteria and fungi that influence growth and development of Agaricus bisporus and other commercial mushrooms. Appl Microbiol Biotechnol 102:1639–1650. https://doi.org/10.1007/s00253-018-8777-z
Article
CAS
PubMed
Google Scholar
Kleofas V, Sommer L, Fraatz MA, Zorn H, Rühl M (2014) Fruiting body production and aroma profile analysis of Agrocybe aegerita cultivated on different substrates. Nat Res 5:233–240. https://doi.org/10.4236/nr.2014.56022
Article
CAS
Google Scholar
Kopytowski Filho J, Minhoni MTA, Andrade MCN, Zied D (2008) Effect of compost supplementation (soybean meal and Champfood) at different phases (spawning and before casing) on productivity of Agaricus blazei. Mush Sci 17:260–270
Google Scholar
Koutrotsios G, Kalogeropoulos N, Kaliora AC, Zervakis G (2018) Towards an increased functionality in oyster (Pleurotus) mushrooms produced on grape marc or olive mill wastes serving as sources of bioactive compounds. J Agric Food Chem 66(24):5971–5983. https://doi.org/10.1021/acs.jafc.8b01532
Article
CAS
PubMed
Google Scholar
Lemke G (1963) Champignonkultur auf nicht kompostiertem Strohsubstrat mit ‘‘Startddungung’’. Die Deutsche Gartenbauwirtschaft 11:167–169
Google Scholar
Liang CH, Wu CY, Lu PL, Kuo YC, Liang ZC (2016) Biological efficiency and nutritional value of the culinary-medicinal mushroom Auricularia cultivated on a sawdust basal substrate supplement with different proportions of grass plants. Saudi J Biol Sci. https://doi.org/10.1016/j.sjbs.2016.10.017
Article
Google Scholar
Liu Q, Ma H, Zhang Y, Dong C (2017) Artificial cultivation of true morels: current state, issues and perspectives. Crit Rev Biotechnol 38(2):259–271. https://doi.org/10.1080/07388551.2017.1333082
Article
PubMed
Google Scholar
Ma Y, Wang Q, Sun X, Wang X, Su W, Song N (2014) A study on recycling of spent mushroom substrate to prepare chars and activated carbon. BioResources 9(3):3939–3954
Google Scholar
McGee CF, Byrne H, Irvine A, Wilson J (2017a) Diversity and dynamics of the DNA-and cDNA-derived compost fungal communities throughout the commercial cultivation process for Agaricus bisporus. Mycologia 109:475–484. https://doi.org/10.1080/00275514.2017.1349498
Article
CAS
PubMed
Google Scholar
McGee CF, Byrne H, Irvine A, Wilson J (2017b) Diversity and dynamics of the DNA and cDNA-derived bacterial compost communities throughout the Agaricus bisporus mushroom cropping process. Ann Microbiol 67:751–761. https://doi.org/10.1007/s13213-017-1303-1
Article
CAS
Google Scholar
Moonmoon M, Shelly NJ, Khan MA, Uddin MN, Hossain K, Tania M, Ahmed S (2011) Effects of different levels of wheat bran, rice bran and maize powder supplementation with saw dust on the production of shiitake mushroom (Lentinus edodes (Berk.) Singer). Saudi. J Biol Sci 18(4):323–328. https://doi.org/10.1016/j.sjbs.2010.12.008
Article
Google Scholar
Naraian R, Sahu RK, Kumar S, Garg SK, Singh CS, Kanaujia RS (2009) Influence of different nitrogen rich supplements during cultivation of Pleurotus florida on corn cob substrate. Environmentalist 29(1):1–7. https://doi.org/10.1007/s10669-008-9174-4
Article
Google Scholar
Natvig DO, Taylor JW, Tsang A, Hutchinson MI, Powell AJ (2015) Mycothermus thermophilus gen. et comb. nov., a new home for the itinerant thermophile Scytalidium thermophilum (Torula thermophila). Mycologia 107(2):319–327. https://doi.org/10.3852/13-399
Article
PubMed
Google Scholar
Pardo JE, Zied DC, Alvarez-Ortí M, Peñaranda JA, Gómez-Cantó C, Pardo-Giménez A (2017) Application of hazard analysis and critical control points (HACCP) to the processing of compost used in the cultivation of button mushroom. Int J Recycl Org Waste Agric 6:179–188. https://doi.org/10.1007/s40093-017-0160-z
Article
Google Scholar
Pardo-Giménez A, Pardo-Gonzalez JE, Cunha Zied D (2011) Evaluation of harvested mushrooms and viability of Agaricus bisporus growth using casing materials made from spent mushroom substrate. Int J Food Sci Technol 46:787–792. https://doi.org/10.1111/j.1365-2621.2011.02551.x
Article
CAS
Google Scholar
Pardo-Giménez A, Zied DC, Álvarez-Ortí M, Rubio M, Pardo JE (2012a) Effect of supplementing compost with grapeseed meal on Agaricus bisporus production. J Sci Food Agric 92(8):1665–1671. https://doi.org/10.1002/jsfa.5529
Article
CAS
PubMed
Google Scholar
Pardo-Giménez A, Picornell Buendia MR, de Juan Valero JA, Pardo-Gonzalez JE, Cunha Zied D (2012b) Cultivation of Pleurotus ostreatus using supplemented spent oyster mushroom substrate. Acta Hortic 933:267–272. https://doi.org/10.17660/ActaHortic.2012.933.33
Article
Google Scholar
Pardo-Giménez A, Pardo JE, Carrasco J, Álvarez-Ortí M, Zied DC (2014) Use of Phase II mushroom compost in Agaricus subrufescens production. In: Proceedings of 8th International Conference on Mushroom Biology and Mushroom Products (ICMBMP8). ICAR-Directorate of Mushroom Research, Solan, India. pp 516–522
Pardo-Giménez A, Catalán L, Carrasco J, Álvarez-Ortí M, Zied D, Pardo J (2016) Effect of supplementing crop substrate with defatted pistachio meal on Agaricus bisporus and Pleurotus ostreatus production. J Sci Food Agric 96(11):3838–3845. https://doi.org/10.1002/jsfa.7579
Article
CAS
PubMed
Google Scholar
Pardo-Giménez A, Pardo JE, Zied DC (2017a) Casing materials and techniques in Agaricus bisporus cultivation. In: Zied DC, Pardo-Giménez A (eds) Edible and medicinal mushrooms: technology and applications. Wiley, Hoboken, pp 385–413. https://doi.org/10.1002/9781119149446.ch7
Chapter
Google Scholar
Pardo-Giménez A, Pardo JE, Zied DC (2017b) Supplementation of high nitrogen Agaricus compost: yield and mushroom quality. J Agr Sci Tech 19:1589–1601
Google Scholar
Pardo-Giménez A, Carrasco J, Roncero JM, Álvarez-Ortí M, Zied DC, Pardo-González JE (2018) Recycling of the biomass waste defatted almond meal as a novel nutritional supplementation for cultivated edible mushrooms. Acta Sci Agro 40:e39341. https://doi.org/10.4025/actasciagron.v40i1.39341
Article
Google Scholar
Payapanon A, Suthirawut S, Shompoosang S, Tsuchiya K, Furuya N, Roongrawee P, Kulpiyawati T, Somrith A (2011) Increase in yield of the straw mushroom (Vovariella volvacea) by supplement with Paenibacillus and Bacillus to the compost. J Faculty Agric Kyushu University 56:249–254
Google Scholar
Picornell-Buendía MR, Pardo A, de Juan JA (2015) Reuse of degraded Pleurotus ostreatus substrate through supplementation with wheat bran and Calprozime® quantitative parameters. Agron Colomb 33(2):261–270. https://doi.org/10.1111/jfq.12216
Article
CAS
Google Scholar
Picornell-Buendía MR, Pardo-Giménez A, de Juan-Valero JA (2016a) Qualitative parameters of Pleurotus ostreatus (jacq.) p. kumm mushrooms grown on supplemented spent substrate. J Soil Sci Plant Nutr 16(1):101–117. https://doi.org/10.4067/s0718-95162016005000008
Article
Google Scholar
Picornell-Buendía MR, Pardo-Giménez A, Juan-Valero D, Arturo J (2016b) Agronomic qualitative viability of spent Pleurotus substrate and its mixture with wheat bran and a commercial supplement. J Food Quality 39(5):533–544. https://doi.org/10.1111/jfq.12216
Article
CAS
Google Scholar
Pratiksha K, Narute TK, Surabhi S, Ganesh A, Sujoy S (2017) Effect of liquid biofertilizers on the yield of button mushroom. J Mycopathol Res 55:135–141
Google Scholar
Randle PE (1985) Supplementation of mushroom composts—a review. Mushroom J 151:241–249
Google Scholar
Rinker DL (2017) Spent mushroom substrate uses. In: Zied DC, Pardo-Giménez A (eds) Edible and medicinal mushrooms: technology and applications. Wiley, Hoboken, pp 427–454. https://doi.org/10.1002/9781119149446.ch20
Chapter
Google Scholar
Royse DJ (2010) Effects of fragmentation, supplementation and the addition of phase II compost to 2nd break compost on mushroom (Agaricus bisporus) yield. Bioresour Technol 101(1):188–192. https://doi.org/10.1016/j.biortech.2009.07.073
Article
CAS
PubMed
Google Scholar
Royse DJ, Chalupa W (2009) Effects of spawn, supplement, and phase II compost additions and time of re-casing second break compost on mushroom (Agaricus bisporus) yield and biological efficiency. Bioresour Technol 100(21):5277–5282. https://doi.org/10.1016/j.biortech.2009.02.074
Article
CAS
PubMed
Google Scholar
Royse DJ, Baars J, Tan Q (2017) Current overview of mushroom production in the world. In: Zied DC, Pardo-Giménez A (eds) Edible and medicinal mushrooms: technology and applications. Wiley, Hoboken, pp 5–13. https://doi.org/10.1002/9781119149446.ch2
Chapter
Google Scholar
Rubini A, Riccioni C, Belfiori B, Paolocci F (2014) Impact of the competition between mating types on the cultivation of Tuber melanosporum: Romeo and Juliet and the matter of space and time. Mycorrhiza 24(1):19–27. https://doi.org/10.1007/s00572-013-0551-6
Article
Google Scholar
Rugolo M, Levin L, Lechner BE (2016) Flammulina velutipes: an option for “alperujo” use. Rev Iberoam Micol 33(4):242–247. https://doi.org/10.1016/j.riam.2015.12.001
Article
PubMed
Google Scholar
Rzymski P, Mleczek M, Niedzielski P, Siwulski M, Gąsecka M (2017) Cultivation of Agaricus bisporus enriched with selenium, zinc and copper. J Sci Food Agric 97(3):923–928. https://doi.org/10.1002/jsfa.7816
Article
CAS
PubMed
Google Scholar
Sánchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27:185–194. https://doi.org/10.1016/j.biotechadv.2008.11.001
Article
CAS
PubMed
Google Scholar
Sánchez C (2010) Cultivation of Pleurotus ostreatus and other edible mushrooms. Appl Microbiol Biotechnol 85:1321–1337. https://doi.org/10.1007/s00253-009-2343-7
Article
CAS
PubMed
Google Scholar
Sánchez JE, Mejia L, Royse DJ (2008) Pangola grass colonized with Scytalidium thermophilum for production of Agaricus bisporus. Bioresour Technol 99(3):655–662. https://doi.org/10.1016/j.biortech.2006.11.067
Article
CAS
PubMed
Google Scholar
Schisler LC, Sinden JW (1962) Nutrient supplementation of mushroom compost at spawning. Mushroom Sci 5:150–164
Google Scholar
Sinden JW, Schisler LC (1962) Nutrient supplementation of mushroom compost at casing. Mushroom Sci 5:267–280
Google Scholar
Taylor JW, Ellison CE (2010) Mushrooms: morphological complexity in the fungi. PNAS 107(26):11655–11656. https://doi.org/10.1073/pnas.1006430107
Article
PubMed
Google Scholar
Vieira FR, Pecchia JA (2018) An exploration into the bacterial community under different pasteurization conditions during substrate preparation (composting-Phase II) for Agaricus bisporus cultivation. Microb Ecol 75:318–330. https://doi.org/10.1007/s00248-017-1026-7
Article
CAS
PubMed
Google Scholar
Vos AM, Jurak E, Pelkmans JF, Herman K, Pels G, Baars JJ, Hendriz E, Kabel MA, Lugones LG, Wösten HA (2017) H2O2 as a candidate bottleneck for MnP activity during cultivation of Agaricus bisporus in compost. AMB Expr 7:124. https://doi.org/10.1186/s13568-017-0424-z
Article
CAS
Google Scholar
Wang Q, Li BB, Li H, Han JR (2010) Yield, dry matter and polysaccharides content of the mushroom Agaricus blazei produced on asparagus straw substrate. Sci Hort 125:16–18. https://doi.org/10.1016/j.scienta.2010.02.022
Article
CAS
Google Scholar
Werner AR, Beelman RB (2002) Growing high-selenium edible and medicinal button mushrooms (Agaricus bisporus (J. Lge) Imbach) as ingredients for functional foods or dietary supplements. Int J Med Mushrooms 4:88–94. https://doi.org/10.1615/IntJMedMushr.v4.i2.100
Article
Google Scholar
Xie C, Gong W, Yan L, Zhu Z, Hu Z, Peng Y (2017) Biodegradation of ramie stalk by Flammulina velutipes: mushroom production and substrate utilization. AMB Expr 7:171. https://doi.org/10.1186/s13568-017-0480-4
Article
CAS
Google Scholar
Yamanaka K (2017) Cultivation of mushroom in plastic bottles and small bags. In: Zied DC, Pardo-Giménez A (eds) Edible and medicinal mushrooms: technology and applications. Wiley, Hoboken, pp 385–413. https://doi.org/10.1002/9781119149446.ch15
Chapter
Google Scholar
Zarenejad F, Yakhchali B, Rasooli I (2012) Evaluation of indigenous potent mushroom growth promoting bacteria (MGPB) on Agaricus bisporus production. World J Microbiol Biotechnol 28(1):99–104. https://doi.org/10.1007/s11274-011-0796-1
Article
CAS
PubMed
Google Scholar
Zervakis GI, Koutrotsios G (2017) Solid-state fermentation of plant residues and agro-industrial wastes for the production of medicinal mushrooms. In: Agrawal D, Tsay HS, Shyur LF, Wu YC, Wang SY (eds) Medicinal plants and fungi: recent advances in research and development. Medicinal and aromatic plants of the world, vol 4. Springer, Singapore, pp 365–396. https://doi.org/10.1007/978-981-10-5978-0_12
Chapter
Google Scholar
Zervakis GI, Koutrotsios G, Katsaris P (2013) Composted versus raw olive mill waste as substrates for the production of medicinal mushrooms: an assessment of selected cultivation and quality parameters. Biomed Res Int, Article ID: 546830. https://doi.org/10.1155/2013/546830
Article
Google Scholar
Zhang Y, Geng W, Shen Y, Wang Y, Dai YC (2014) Edible mushroom cultivation for food security and rural development in China: bio-innovation, technological dissemination and marketing. Sustainability 6(5):2961–2973. https://doi.org/10.3390/su6052961
Article
Google Scholar
Zhou Q, Tang X, Huang Z, Song P, Zhou J (2010) Novel method for cultivating Agaricus blazei. Acta Edulis Fungi 17:39–42
Google Scholar
Zied DC, Savoie JM, Pardo-Giménez A (2011) Soybean the main nitrogen source in cultivation substrates of edible and medicinal mushrooms. In: El-Shemy HA (ed) Soybean and nutrition. InTech Open Access, Rijeka, pp 433–452
Google Scholar
Zied DC, Cardoso C, Pardo-Giménez A, Dias E, Zeraik ML, Pardo JE (2018) Using of appropriated strains in the practice of compost supplementation for Agaricus subrufescens production. Front Sustain Food Syst. https://doi.org/10.3389/fsufs.2018.00026
Article
Google Scholar