Agrawal GK, Jwa NS, Rakwal R (2000) A novel rice (Oryza sativa L.) acidic PR1 gene highly responsive to cut, phytohormones, and protein phosphatase inhibitors. Biochem Biophys Res Commun 274:157–165. https://doi.org/10.1006/bbrc.2000.3114
Article
CAS
PubMed
Google Scholar
Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. JKSUS 26:1–20. https://doi.org/10.1016/j.jksus.2013.05.00
Article
Google Scholar
Ahmad P, Prasad MNV (2012) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer Science & Business Media, Berlin. ISBN 978-1-4614-0815-4
Book
Google Scholar
Alami Y, Achouak W, Marol C, Heulin T (2000) Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. Strain isolated from sunflower roots. Appl Environ Microbiol 66:3393–3398. https://doi.org/10.1128/AEM.66.8.3393-3398.2000
Article
CAS
PubMed
PubMed Central
Google Scholar
Alamri SA, Mostafa YS (2009) Effect of nitrogen supply and Azospirillum brasilense Sp-248 on the response of wheat to seawater irrigation. Saudi J Biol Sci 16:101–107. https://doi.org/10.1016/j.sjbs.2009.10.009
Article
PubMed
PubMed Central
Google Scholar
Amor FM, Cuadra-Crespo P (2012) Plant growth-promoting bacteria as a tool to improve salinity tolerance in sweet pepper. Funct Plant Biol 39:82–90. https://doi.org/10.1071/FP11173
Article
CAS
PubMed
Google Scholar
Ardakani M, Mafakheri S (2011) Designing a sustainable agroecosystem for wheat (Triticum aestivum L.) production. J Appl Environ Biol Sci 1:401–413. https://doi.org/10.1016/S1573-5214(07)80001-7
Article
Google Scholar
Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639. https://doi.org/10.1146/annurev.arplant.50.1.601
Article
CAS
PubMed
Google Scholar
Askary M, Mostajeran A, Amooaghaei R, Mostajeran M (2009) Influence of the co-inoculation Azospirillum brasilense and Rhizobium meliloti plus 2,4-D on grain yield and N, P, K content of Triticum aestivum (Cv. Baccros and Mahdavi). Am J Agric Environ Sci. 5:296–307. ISSN 1818-6769
Bacilio M, Vazquez P, Bashan Y (2003) Alleviation of noxious effects of cattle ranch composts on wheat seed germination by inoculation with Azospirillum spp. Biol Fertil Soils 38:261–266. https://doi.org/10.1007/s00374-003-0650-1
Article
Google Scholar
Baldani JI, Baldani VLD (2005) History on the biological nitrogen fixation research in graminaceous plants: special emphasis on the Brazilian experience. An Acad Bras Ciênc 77:549–579. https://doi.org/10.1590/S0001-37652005000300014
Article
CAS
PubMed
Google Scholar
Baniaghil N, Arzanesh MH, Ghorbanli M, Shahbazi M (2013) The effect of plant growth promoting rhizobacteria on growth parameters, antioxidant enzymes and microelements of canola under salt stress. J Appl Environ Biol Sci 3:17–27. ISSN 2090-4274
Bano Q, Ilyas N, Bano A, Zafar N, Akram A, Hassan F (2013) Effect of Azospirillum inoculation on maize (Zea mays L.) under drought stress. Pakistan J Bot 45:13–20
CAS
Google Scholar
Barassi CA, Ayrault G, Creus CM, Sueldo RJ, Sobrero MT (2006) Seed inoculation with Azospirillum mitigates NaCl effects on lettuce. Sci Hortic 109:8–14. https://doi.org/10.1016/j.scienta.2006.02.025
Article
CAS
Google Scholar
Bari R, Jones JDG (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488. https://doi.org/10.1007/s11103-008-9435-0
Article
CAS
PubMed
Google Scholar
Bashan Y, de-Bashan LE (2002a) Protection of tomato seedlings against infection by Pseudomonas syringae pv tomato using the plant growth-promoting bacterium Azospirillum brasilense. Appl Environ Microbiol 68:2637–2643. https://doi.org/10.1128/AEM.68.6.2637-2643.2002
Article
CAS
PubMed
PubMed Central
Google Scholar
Bashan Y, de-Bashan LE (2002b) Reduction of bacterial speck (Pseudomonas syringae pv tomato) of tomato by combined treatments of plant growth-promoting bacterium, Azospirillum brasilense, streptomycin sulfate, and chemothermal seed treatment. Eur J Plant Pathol 108:821–829. https://doi.org/10.1023/A:1021274419518
Article
CAS
Google Scholar
Bashan Y, Holguin G, de-Bashan LE (2004) Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol 50:52–577. https://doi.org/10.1139/w04-035
Article
Google Scholar
Bashan Y, de-Bashan LE (2010) How the plant growth-promoting bacterium Azospirillum promotes plant growth—a critical assessment. Adv Agron 108:77–136. https://doi.org/10.1016/S0065-2113(10)08002-8
Article
CAS
Google Scholar
Bashan Y, Salazar BG, Moreno M, Lopez BR, Linderman RG (2012) Restoration of eroded soil in the Sonoran Desert with native leguminous trees using plant growth-promoting microorganisms and limited amounts of compost and water. J Environ Manag 102:26–36. https://doi.org/10.1016/j.jenvman.2011.12.032
Article
CAS
Google Scholar
Beijerinck MW (1925) Über ein Spirillum, welches freien Stickstoff binden kann. Zentralbl Bakteriol Parasitenkd Infekt Abt 63:353
CAS
Google Scholar
Bottini R, Fulchieri M, Pearce D, Pharis RP (1989) Identification of gibberellins A1, A3, and iso-A3 in cultures of Azospirillum lipoferum. Plant Physiol 90:45–47. https://doi.org/10.1104/pp.90.1.45
Article
CAS
PubMed
PubMed Central
Google Scholar
Bowler C, Montagu MV, Inzé D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43:83–116. https://doi.org/10.1146/annurev.pp.43.060192.000503
Article
CAS
Google Scholar
Bulegon LG, Guimarães VF, Laureth JCU (2016) Azospirillum brasilense affects the antioxidant activity and leaf pigment content of Urochloa ruziziensis under water stress. Pesqui Agropecu Trop 46:343–349. https://doi.org/10.1590/1983-40632016v4641489
Article
Google Scholar
Carrozzi LE, Creus CM, Barassi CA, Monterubbianesi G, Di Benedetto A (2012) Reparation of aged lettuce (Lactuca sativa) seeds by osmotic priming and Azospirillum brasilense inoculation. Botany 90:1093–1102. https://doi.org/10.1139/b2012-087
Article
CAS
Google Scholar
Caarls L, Pieterse CMJ, Van Wees SCM (2015) How salicylic acid takes transcriptional control over jasmonic acid signaling. Front Plant Sci 6:1–11. https://doi.org/10.3389/fpls.2015.00170
Article
Google Scholar
Cassán FD, García de Salamone IE (2008) Azospirillum sp. Cell physiology, plant interactions and agronomic research in Argentina. I International workshop on Azospirillum: cell physiology, plant response and agronomic research in Argentine 2007
Cassán F, Perrig D, Sgroy V, Masciarelli O, Penna C, Luna V (2009) Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). Eur J Soil Biol 45:28–35. https://doi.org/10.1016/j.ejsobi.2008.08.005
Article
CAS
Google Scholar
Cassán FD, Okon Y, Creus CM (2015) Handbook for Azospirillum. Springer, Switzerland. ISBN 978-3-319-06542-7
Book
Google Scholar
Cerezini P, Kuwano BH, dos Santos MB, Terassi F, Hungria M, Nogueira MA (2016) Strategies to promote early nodulation in soybean under drought. Field Crop Res 196:160–167. https://doi.org/10.1016/j.fcr.2016.06.017
Article
Google Scholar
Chen THH, Murata N (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5:250–257. https://doi.org/10.1016/S1369-5266(02)00255-8
Article
CAS
PubMed
Google Scholar
Chibeba AM, Guimarães MDF, Brito OR, Nogueira MA, Araujo RS, Hungria M (2015) Co-inoculation of soybean with Bradyrhizobium and Azospirillum promotes early nodulation. Am J Plant Sci 6:1641–1649. https://doi.org/10.4236/ajps.2015.610164
Article
Google Scholar
Cohen AC, Bottini R, Piccoli PN (2008) Azospirillum brasilense Sp. 245 produces ABA in chemically-defined culture medium and increases ABA content in Arabidopsis plants. Plant Growth Regul 54:97–103. https://doi.org/10.1007/s10725-007-9232-9
Article
CAS
Google Scholar
Cohen AC, Bottini R, Pontin M, Berli FJ, Moreno D, Boccanlandro H, Travaglia CN, Piccoli PN (2015) Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels. Physiol Plant 153:79–90. https://doi.org/10.1111/ppl.12221
Article
CAS
PubMed
Google Scholar
Creus CM, Sueldo RJ, Barassi CA (2004) Water relations and yield in Azospirillum- inoculated wheat exposed to drought in the field. Can J Bot 82:273–281. https://doi.org/10.1139/b03-119
Article
Google Scholar
Curá A, Franz DR, Filosofía JE, Balestrasse KB, Burgueño LE (2017) Inoculation with Azospirillum sp. and Herbaspirillum sp. bacteria increases the tolerance of maize to drought stress. Microorganisms 5:41. https://doi.org/10.3390/microorganisms5030041
Article
CAS
PubMed Central
Google Scholar
Dardanelli MS, Fernández de Córdoba FJ, Espuny MR, Carvajal MAR, Díaz MES, Serrando AMG, Okon Y, Megías M (2008) Effect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under salt stress. Soil Biol Biochem 40:2713–2721. https://doi.org/10.1016/j.soilbio.2008.06.016
Article
CAS
Google Scholar
Davletova S, Rizhsky L, Liang H, Shengqiang Z, Oliver DJ, Coutu J, Shulaev V, Schlauch K, Mittler R (2005) Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17:268–281. https://doi.org/10.1105/tpc.104.026971.1
Article
CAS
PubMed
PubMed Central
Google Scholar
De Vleesschauwer D, Djavaheri M, Bakker PAHM, Hofte M (2008) Pseudomonas fluorescens WCS374r-induced systemic resistance in rice against Magnaporthe oryzae is based on pseudobactin-mediated priming for a salicylic acid-repressible multifaceted defense response. Plant Physiol 148:1996–2012. https://doi.org/10.1104/pp.108.127878
Article
CAS
PubMed
PubMed Central
Google Scholar
del Cordovilla M, Berrido SI, Ligero F, Lluch C (1999) Rhizobium strain effects on the growth and nitrogen assimilation in Pisum sativum and Vicia faba plant growth under salt stress. J Plant Physiol 154:127–131. https://doi.org/10.1016/S0176-1617(99)80328-9
Article
Google Scholar
de-Bashan LE, Hernandez J-P, Nelson NK, Bashan Y, Maier R (2010) Growth of quailbush in acidic, metalliferous desert mine tailings: effect of Azospirillum brasilense Sp6 on biomass production and rhizosphere community structure. Microb Ecol 60:915–927. https://doi.org/10.1007/s00248-010-9713-7
Article
CAS
PubMed
PubMed Central
Google Scholar
Döbereiner J, Pedrosa FO (1987) Nitrogen-fixing bacteria in non-leguminous crop plants. Science Tech, Springer Verlag, Madison, p 155. ISBN 0910239118
Google Scholar
Dodd IC, Zinovkina NY, Safronova VI, Belimov AA (2010) Rhizobacterial mediation of plant hormone status. Ann Appl Biol 157:361–379. https://doi.org/10.1111/j.1744-7348.2010.00439.x
Article
CAS
Google Scholar
Drogue B, Sanguin H, Chamam A, Mozar M, Llauro C, Panaud O, Prigent-Combaret C, Picault N, Wisniewski-Dyé F (2014) Plant root transcriptome profiling reveals a strain-dependent response during Azospirillum-rice cooperation. Front Plant Sci 5:1–14. https://doi.org/10.3389/fpls.2014.00607
Article
Google Scholar
DSMZ (2018) Prokaryotic nomenclature up-to-date. https://www.dsmz.de/bacterial-diversity/prokaryotic-nomenclature-up-to-date/prokaryotic-nomenclature-up-to-date.html. Accessed 25 Apr 2018
Dutta S, Mishra AK, Dileep Kumar BS (2008) Induction of systemic resistance against fusarial wilt in pigeon pea through interaction of plant growth promoting rhizobacteria and rhizobia. Soil Biol Biochem 40:452–461. https://doi.org/10.1016/j.soilbio.2007.09.009
Article
CAS
Google Scholar
Dwivedi SL, Sahrawat KL, Upadhyaya HD, Mengoni A, Galardini M, Bazzicalupo M, Biondi EG, Hungria M, Kaschuk G, Blair MW, Ortiz R (2015) Advances in host plant and Rhizobium genomics to enhance symbiotic nitrogen fixation in grain legumes. Adv Agron 129:1–116. https://doi.org/10.1016/bs.agron.2014.09.001
Article
Google Scholar
Elias JM, Guerrero-Molina MF, Martínez-Zamora MG, Díaz-Ricci JC, Pedraza RO (2018) Role of ethylene and related gene expression in the interaction between strawberry plants and the plant growth-promoting bacterium Azospirillum brasilense. Plant Biol 20:490–496. https://doi.org/10.1111/plb.12697
Article
CAS
PubMed
Google Scholar
FAO (2009) How to feed the world in 2050. Rome: FAO. http://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf. Accessed 01 Jan 18
Fasciglione G, Casanovas EM, Quillehauquy V, Yommi AK, Goni MG, Roura SI, Barassi CA (2015) Azospirillum inoculation effects on growth, product quality and storage life of lettuce plants grown under salt stress. Sci Hortic 195:154–162. https://doi.org/10.1016/j.scienta.2015.09.015
Article
CAS
Google Scholar
Fibach-Paldi S, Burdman S, Okon Y (2012) Key physiological properties contributing to rhizosphere adaptation and plant growth promotion abilities of Azospirillum brasilense. FEMS Microbiol Lett 326:99–108. https://doi.org/10.1111/j.1574-6968.2011.02407.x
Article
CAS
PubMed
Google Scholar
Finkel T (2000) Redox-dependent signal transduction. FEBS Lett 476:52–54. https://doi.org/10.1016/S0014-5793(00)01669-0
Article
CAS
PubMed
Google Scholar
Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC, Balzer C, Bennett EM, Varpenter SR, Hill J, Monfreda C, Polasky S, Rockström J, Sheehan J, Siebert S, Tilman D, Zaks DPM (2011) Solutions for a cultivated planet. Nature 478:337–342. https://doi.org/10.1038/nature10452
Article
CAS
PubMed
Google Scholar
Fu ZQ, Yan S, Saleh A, Wang W, Ruble J, Oka N, Mohan R, Spoel SH, Tada Y, Zheng N, Dong X (2012) NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature 486:228–232. https://doi.org/10.1038/nature11162
Article
CAS
PubMed
PubMed Central
Google Scholar
Fu ZQ, Dong X (2013) Systemic acquired resistance: turning local infection into global defense. Annu Rev Plant Biol 64:839–863. https://doi.org/10.1146/annurev-arplant-042811-105606
Article
CAS
PubMed
Google Scholar
Fukami J, Nogueira MA, Araujo RS, Hungria M (2016) Accessing inoculation methods of maize and wheat with Azospirillum brasilense. AMB Express 6:1. https://doi.org/10.1186/s13568-015-0171-y)
Article
CAS
Google Scholar
Fukami J, Ollero FJ, Megías M, Hungria M (2017) Phytohormones and induction of plant stress tolerance and defense genes by seed and foliar inoculation with Azospirillum brasilense cells and metabolites promote maize growth. AMB Express 7:153. https://doi.org/10.1186/s13568-017-0453-7
Article
CAS
PubMed
PubMed Central
Google Scholar
Fukami J, de la Osa C, Ollero FJ, Megías M, Hungria M (2018) Co-inoculation of maize with Azospirillum brasilense and Rhizobium tropici as a strategy to mitigate salinity stress. Funct Plant Biol 45:328–339. https://doi.org/10.1071/FP17167
Article
CAS
PubMed
Google Scholar
García JE, Maroniche G, Creus C, Suárez-Rodríguez R, Ramirez-Trujillo JA, Groppa MD (2017) In vitro PGPR properties and osmotic tolerance of different Azospirillum native strains and their effects on growth of maize under drought stress. Microbiol Res 202:21–29. https://doi.org/10.1016/j.micres.2017.04.007
Article
CAS
PubMed
Google Scholar
García-Fraile P, Carro L, Robledo M, Ramírez-Bahena MH, Flores-Félix D, Fernández MT, Mateos PF, Rivas R, Igual JM, Martínez-Molina E, Peix A, Velázquez E (2012) Rhizobium promotes non-legumes growth and quality in several production steps: towards a biofertilization of edible raw vegetables healthy for humans. PLoS ONE 7(5):e38122. https://doi.org/10.1371/journal.pone.0038122
Article
CAS
PubMed
PubMed Central
Google Scholar
Gilbert ME, Zwieniecki MA, Holbrook NM (2011) Independent variation in photosynthetic capacity and stomatal conductance leads to differences in intrinsic water use efficiency in 11 soybean genotypes before and during mild drought. J Exp Bot 62:2875–2887. https://doi.org/10.1093/jxb/erq461
Article
CAS
PubMed
Google Scholar
Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930. https://doi.org/10.1016/j.plaphy.2010.08.016
Article
CAS
PubMed
Google Scholar
Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica (Cairo) 2012:1–15. https://doi.org/10.6064/2012/963401
Article
CAS
Google Scholar
Gond SK, Bergen MS, Torres MS, White JF Jr, Kharwar RN (2015) Effect of bacterial endophyte on expression of defense genes in Indian popcorn against Fusarium moniliforme. Symbiosis 66:133–140. https://doi.org/10.1007/s13199-015-0348-9
Article
CAS
Google Scholar
Goswami D, Thakker JN, Dhandhukia PC, Tejada Moral M (2016) Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food Agric 2:1127500. https://doi.org/10.1080/23311932.2015.1127500
Article
CAS
Google Scholar
Gururani MA, Upadhyaya CP, Baskar V, Venkatesh J, Nookaraju A, Park SW (2013) Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through inducing changes in the expression of ROS-scavenging enzymes and improved photosynthetic performance. J Plant Growth Regul 32:245–258. https://doi.org/10.1007/s00344-012-9292-6
Article
CAS
Google Scholar
Halilwell B, Gutteridge JMC (1989) Free radicals in biology and medicine. Clarendon Press, Oxford. https://doi.org/10.1093/acprof:oso/9780198717478.001.0001
Book
Google Scholar
Hamdia MAES, Shaddad MAK, Doaa MM (2004) Mechanisms of salt tolerance and interactive effects of Azospirillum brasilense inoculation on maize cultivars grown under salt stress conditions. Plant Growth Regul 44:165–174. https://doi.org/10.1007/s10725-004-3131-0
Article
CAS
Google Scholar
Han HS, Lee KD (2005) Plant growth promoting rhizobacteria effect on antioxidant status, photosynthesis, mineral uptake and growth of lettuce under soil salinity. Res J Agric Biol Sci 1:210–215
Google Scholar
Hasan M, Bano A, Hassan SG, Iqbal J, Awan U, Rong-ji D, Khan KA (2014) Enhancement of rice growth and production of growth-promoting phytohormones by inoculation with Rhizobium and other Rhizobacteria. World Appl Sci J 31:1734–1743. https://doi.org/10.5829/idosi.wasj.2014.31.10.364
Article
CAS
Google Scholar
Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499. https://doi.org/10.1146/annurev.arplant.51.1.463
Article
CAS
PubMed
Google Scholar
Heidari M, Golpayegani A (2012) Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR) on antioxidant status and photosynthetic pigments in basil (Ocimum basilicum L.). J Saudi Soc Agric Sci 11:57–61. https://doi.org/10.1016/j.jssas.2011.09.001
Article
Google Scholar
Hodges DM, Andrews CJ, Johnson DA, Hamilton RI (1996) Antioxidant compound response to chilling stress in differentially sensitive inbred maize line. Physiol Plant 98:685–692. https://doi.org/10.1093/jxb/48.5.1105
Article
CAS
Google Scholar
Huang B, DaCosta M, Jiang Y (2014) Research advances in mechanisms of turfgrass tolerance to abiotic stresses: from physiology to molecular biology. CRC Crit Rev Plant Sci 33:141–189. https://doi.org/10.1080/07352689.2014.870411
Article
CAS
Google Scholar
Hungria M, Campo RJ, Souza EM, Pedrosa FO (2010) Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant Soil 331:413–425. https://doi.org/10.1007/s11104-009-0262-0
Article
CAS
Google Scholar
Hungria M (2011) Inoculação com Azospirillum brasilense: inovação em rendimento a baixo custo. Circular Técnica 325. Embrapa Soja, Londrina, p. 36. ISSN 1516-781X
Hungria M, Nogueira MA, Araujo RS (2013) Co-inoculation of soybeans and common beans with rhizobia and azospirilla: strategies to improve sustainability. Biol Fertil Soils 49:791–801. https://doi.org/10.1007/s00374-012-0771-5
Article
Google Scholar
Hungria M, Nogueira MA, Araujo RS (2015) Soybean seed co-inoculation with Bradyrhizobium spp. and Azospirillum brasilense: a new biotechnological tool to improve yield and sustainability. Am J Plant Sci 6:811–817. https://doi.org/10.4236/ajps.2015.66087
Article
CAS
Google Scholar
Hungria M, Nogueira MA, Araujo RS (2016) Inoculation of Brachiaria spp. with the plant growth-promoting bacterium Azospirillum brasilense: an environment-friendly component in the reclamation of degraded pastures in the tropics. Agric Ecosyst Environ 221:125–131. https://doi.org/10.1016/j.agee.2016.01.024
Article
CAS
Google Scholar
Imada EL, Santos AP, Oliveira ALM, Hungria M, Rodrigues EP (2017) Indole-3-acetic acid production via the indole-3-pyruvate pathway by plant growth promoter Rhizobium tropici CIAT 899 is strongly inhibited by ammonium. Res Microbiol 168:283–292. https://doi.org/10.1016/j.resmic.2016.10.010
Article
CAS
PubMed
Google Scholar
IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. http://ipcc-wg2.gov/AR5/report/full-report. Accessed 01 Jan 2018
Jozefczak M, Bohler S, Schat H, Horemans N, Guisez Y, Remans T, Vangronsveld J, Cuypers A (2015) Both the concentration and redox state of glutathione and ascorbate influence the sensitivity of arabidopsis to cadmium. Ann Bot 116:601–612. https://doi.org/10.1093/aob/mcv075
Article
CAS
PubMed
PubMed Central
Google Scholar
Juge C, Prévost D, Bertrand A, Bipfubusa M, Chalifou FP (2012) Growth and biochemical responses of soybean to double and triple microbial associations with Bradyrhizobium, Azospirillum and arbuscular mycorrhizae. Appl Soil Ecol 61:147–157. https://doi.org/10.1016/j.apsoil.2012.05.006
Article
Google Scholar
Jung S, Kernodle SP, Scandalios JG (2001) Differential antioxidant responses to norflurazon-induced oxidative stress in maize. Redox Rep 6:311–317. https://doi.org/10.1179/135100001101536454
Article
CAS
PubMed
Google Scholar
Kauffmann S, Legrand M, Geoffroy P, Fritig B (1987) Biological function of “pathogenesis-related” proteins: four PR proteins of tobacco have 1,3-β-glucanase activity. EMBO J 6:3209–3212. https://doi.org/10.1002/j.1460-2075.1987.tb02637.x
Article
CAS
PubMed
PubMed Central
Google Scholar
Kawagoe Y, Shiraishi S, Kondo H, Yamamoto S, Aoki Y, Suzuki S (2015) Cyclic lipopeptide iturin A structure-dependently induces defense response in Arabidopsis plants by activating SA and JA signaling pathways. Biochem Biophys Res Commun 460:1015–1020. https://doi.org/10.1016/j.bbrc.2015.03.143
Article
CAS
PubMed
Google Scholar
Khalid M, Bilal M, Hassani D, Iqbal N, Wang H, Huang D (2017) Mitigation of salt stress in white clover (Trifolium repens) by Azospirillum brasilense and its inoculation effect. Bot Stud 58:5. https://doi.org/10.1186/s40529-016-0160-8
Article
CAS
PubMed
PubMed Central
Google Scholar
Khan MR, Kounsar K, Hamid A (2002) Effect of certain rhizobacteria and antoagonistic fungi on root-nodulation and root-knot nematode disease of green gram. Nematol Mediterr 30:85–89
Google Scholar
Kim Y-C, Glick BR, Bashan Y, Ryu C-M (2012) Enhancement of plant drought tolerance by microbes. In: Aroca R (ed) Plant responses to drought stress: from morphological to molecular features. Springer Verlag, Berlin, pp 383–413. ISBN 978-3-642-32653-0
Chapter
Google Scholar
Kim K, Jang YJ, Lee SM, Oh BT, Chae JC, Lee KJ (2014) Alleviation of salt stress by Enterobacter sp. EJ01 in tomato and Arabidopsis is accompanied by up-regulation of conserved salinity responsive factors in plants. Mol Cells 37:109–117. https://doi.org/10.14348/molcells.2014.2239
Article
CAS
PubMed
PubMed Central
Google Scholar
Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48:251–275. https://doi.org/10.1146/annurev.arplant.48.1.251
Article
CAS
PubMed
Google Scholar
León IP, Montesano M (2013) Activation of defense mechanisms against pathogens in mosses and flowering plants. Int J Mol Sci 14:3178–3200. https://doi.org/10.3390/ijms14023178
Article
CAS
PubMed Central
Google Scholar
Lesk C, Rowhani P, Ramankutty N (2016) Influence of extreme weather disasters on global crop production. Nature 529:84–87. https://doi.org/10.1038/nature16467
Article
CAS
PubMed
Google Scholar
Lim JH, Kim SD (2013) Induction of drought stress resistance by multi-functional PGPR Bacillus licheniformis K11 in pepper. Plant Pathol J 29:201–208. https://doi.org/10.5423/PPJ.SI.02.2013.0021
Article
PubMed
PubMed Central
Google Scholar
Lima E, Boddey RM, Döbereiner J (1987) Quantification of biological nitrogen fixation associated with sugarcane using a 15N aided nitrogen balance. Soil Biol Biochem 19:165–170
Article
CAS
Google Scholar
Lopes MS, Araus JL, van Heerden PDR, Foyer CH (2011) Enhancing drought tolerance in C4 crops. J Exp Bot 62:3135–3153. https://doi.org/10.1093/jxb/err105
Article
CAS
PubMed
Google Scholar
Lorenzo O, Solano R (2005) Molecular players regulating the jasmonate signalling network. Curr Opin Plant Biol 8:532–540. https://doi.org/10.1016/j.pbi.2005.07.003
Article
CAS
PubMed
Google Scholar
Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556. https://doi.org/10.1146/annurev.micro.62.081307.162918
Article
CAS
PubMed
Google Scholar
Malamy J, Carr JP, Klessig DF, Raskin I (1990) Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science 250(4983):1002–1004. https://doi.org/10.1126/science.250.4983.1002
Article
CAS
PubMed
Google Scholar
Marks BB, Megías M, Ollero FJ, Nogueira MA, Araujo RS, Hungria M (2015) Maize growth promotion by inoculation with Azospirillum brasilense and metabolites of Rhizobium tropici CIAT 899 enriched on lipo-chitooligossacharides (LCOs). AMB Express 5:71. https://doi.org/10.1186/s13568-015-0154-z
Article
CAS
PubMed
PubMed Central
Google Scholar
Marulanda A, Porcel R, Barea JM, Azcón R (2007) Drought tolerance and antioxidant activities in lavender plants colonized by native drought-tolerant or drought-sensitive Glomus species. Microb Ecol 54:543–552. https://doi.org/10.1007/s00248-007-9237-y
Article
CAS
PubMed
Google Scholar
McArthur JW, McCord GC (2017) Fertilizing growth: agricultural inputs and their effects in economic development. J Dev Econ 127:133–152. https://doi.org/10.1016/j.jdeveco.2017.02.007
Article
PubMed
PubMed Central
Google Scholar
Méndez-Gómez M, Castro-Mercado E, Alexandre G, García-Pineda E (2015) Oxidative and antioxidative responses in the wheat-Azospirillum brasilense interaction. Protoplasma 253:477–486. https://doi.org/10.1007/s00709-015-0826-1
Article
CAS
PubMed
Google Scholar
Morris SW, Vernooij B, Titatarn S, Starret M, Thomas S, Wiltse CC, Frederiksen RA, Bhandhufalck A, Hulbert S, Uknes S (1998) Induced resistance responses in maize. Mol Plant-Microbe Interact 11:643–658. https://doi.org/10.1094/MPMI.1998.11.7.643
Article
CAS
PubMed
Google Scholar
Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
Article
CAS
PubMed
Google Scholar
Mutava RN, Prince SJK, Syed NH, Song L, Valliyodan B, Chen W, Nguyen HT (2015) Understanding abiotic stress tolerance mechanisms in soybean: a comparative evaluation of soybean response to drought and flooding stress. Plant Physiol Biochem 86:109–120. https://doi.org/10.1016/j.plaphy.2014.11.010
Article
CAS
PubMed
Google Scholar
Nabti E, Sahnoune M, Ghoul M, Fischer D, Hofmann A, Rothballer M, Schimid M, Hartmann A (2009) Restoration of growth of durum wheat (Triticum durum var. waha) under saline conditions due to inoculation with the rhizosphere bacterium Azospirillum brasilense NH and extracts of the marine alga Ulva lactuca. J Plant Growth Regul 29:6–22. https://doi.org/10.1007/s00344-009-9107-6
Article
CAS
Google Scholar
Ngumbi E, Kloepper J (2016) Bacterial-mediated drought tolerance: current and future prospects. Appl Soil Ecol 105:109–125. https://doi.org/10.1016/j.apsoil.2016.04.009
Article
Google Scholar
Nuccio ML, Rhodest D, McNeil SD, Hanson AD (1999) Metabolic engineering of plants for osmotic stress resistance. Curr Opin Plant Biol 2:128–134. https://doi.org/10.1016/S1369-5266(99)80026-0
Article
CAS
PubMed
Google Scholar
Okon Y, Heytler PG, Hardy RW (1983) N2 Fixation by Azospirillum brasilense and its incorporation into host Setaria italica. Appl Environ Microbiol 46:694–697
CAS
PubMed
PubMed Central
Google Scholar
Okon Y, Labandera-Gonzalez CA (1994) Agronomic applications of Azospirillum: an evaluation of 20 years worldwide field inoculation. Soil Biol Biochem 26:1591–1601. https://doi.org/10.1016/0038-0717(94)90311-5
Article
CAS
Google Scholar
Okon Y, Labandera-Gonzales C, Lage M, Lage P (2015) Agronomic applications of Azospirillum and other PGPR. In: de Brujin FJ (ed) Biological nitrogen fixation. Wiley, Hoboken. https://doi.org/10.1002/9781119053095.ch90
Chapter
Google Scholar
Ozyigit II, Filiz E, Vatansever R, Kurtoglu KY, Koc I, Öztürk MX, Anjum NA (2016) Identification and comparative analysis of H2O2-scavenging enzymes (ascorbate peroxidase and glutathione peroxidase) in selected plants employing bioinformatics approaches. Front Plant Sci 7:1–23. https://doi.org/10.3389/fpls.2016.00301
Article
Google Scholar
Pajerowska-Mukhtar KM, Emerine DK, Mukhtar MS (2013) Tell me more: roles of NPRs in plant immunity. Trends Plant Sci 18:402–411. https://doi.org/10.1016/j.tplants.2013.04.004
Article
CAS
PubMed
Google Scholar
Pereg L, Luz E, Bashan Y (2016) Assessment of affinity and specificity of Azospirillum for plants. Plant Soil 399:389–414. https://doi.org/10.1007/s11104-015-2778-9
Article
CAS
Google Scholar
Pérez-Montaño F, Alías-Villegas C, Bellogín RA, del Cerro P, Expuny MR, Jiménez-Guerrero I, López-Baena FJ, Ollero FJ, Cubo T (2014) Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiol Res 169:325–336. https://doi.org/10.1016/j.micres.2013.09.011
Article
PubMed
Google Scholar
Pieterse CMJ, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wess SCM (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521. https://doi.org/10.1146/annurev-cellbio-092910-154055
Article
CAS
PubMed
Google Scholar
Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM, Bakker PAHM (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375. https://doi.org/10.1146/annurev-phyto-082712-102340
Article
CAS
PubMed
Google Scholar
Pieterse CMJ, Van Wees SCM (2015) Induced disease resistance. In: Lugtenberg B (ed) Principles of plant-microbe interactions. Springer, Berlin, pp 123–133. https://doi.org/10.1007/978-3-319-08575-3_14
Chapter
Google Scholar
Puente ML, Gualpa JL, Lopez GA, Molina RM, Carletti SM, Cassán FD (2017) The benefits of foliar inoculation with Azospirillum brasilense in soybean are explained by an auxin signaling model. Symbiosis (Online). https://doi.org/10.1007/s13199-017-0536-x
Article
Google Scholar
Reis VM, Baldani JI, Baldani VLD, Döbereiner J (2000) Biological nitrogen fixation in graminae and palm trees. Crit Rev Plant Sci 19(3):227–247. https://doi.org/10.1016/S0735-2689(00)80003-9
Article
CAS
Google Scholar
Rodríguez-Salazar J, Suárez R, Caballero-Mellado J, Iturriaga G (2009) Trehalose accumulation in Azospirillum brasilense improves drought tolerance and biomass in maize plants. FEMS Microbiol Lett 296:52–59. https://doi.org/10.1111/j.1574-6968.2009.01614.x
Article
CAS
PubMed
Google Scholar
Romero AM, Correa OS, Moccia S, Rivas JG (2003) Effect of Azospirillum-mediated plant growth promotion on the development of bacterial diseases on fresh-market and cherry tomato. J Appl Microbiol 95:832–838. https://doi.org/10.1046/j.1365-2672.2003.02053.x
Article
CAS
PubMed
Google Scholar
Roser M, Ritchie H (2017) Fertilizers and Pesticides. Oxford: Our World in Data. https://ourworldindata.org/fertilizer-and-pesticides/. Accessed on 01 Jan 2018
Sá JCM, Lal R, Cerri CC, Lorenz K, Hungria J, Carvalho PCC (2017) Low-carbon agriculture in South America to mitigate global climate change and advance food security. Environ Int 98:102–112. https://doi.org/10.1016/j.envint.2016.10.020
Article
CAS
PubMed
Google Scholar
Saeed M, Ilyas N, Mazhar R, Bibi F, Batool N (2016) Drought mitigation potential of Azospirillum inoculation in canola (Brassica napus). J Appl Bot Food Qual 278:270–278. https://doi.org/10.5073/JABFQ.2016.089.035
Article
Google Scholar
Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 2011:1–30
Google Scholar
Sahoo RK, Ansari MW, Pradhan M, Dangar TK, Mohanty S, Tuteja N (2014) Phenotypic and molecular characterization of native Azospirillum strains from rice fields to improve crop productivity. Protoplasma 251:943–953. https://doi.org/10.1007/s00709-013-0607-7
Article
CAS
PubMed
Google Scholar
Sandhya V, Ali SZ, Grover M, Reddy G, Venkateswarlu B (2010) Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regul 62:21–30. https://doi.org/10.1007/s10725-010-9479-4
Article
CAS
Google Scholar
Sankari JU, Dinakar S, Sekar C (2011) Dual effect of Azospirillum exopolysaccharides (EPS) on the enhancement of plant growth and biocontrol of blast (Pyricularia oryzae) disease in upland rice (var. ASD-19). J Phytol 3:16–19. ISSN 2075-6240
Sarma BK, Yadav SK, Singh DP, Singh HB (2012) Rhizobacteria mediated induced systemic tolerance in plants: prospects for abiotic stress management. In: Maheshwari DK (ed) Bacteria in agrobiology: stress management. Springer, Berlin, pp 225–238. https://doi.org/10.1007/978-3-642-23465-1_11
Chapter
Google Scholar
Sarma RK, Saikia R (2014) Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa GGRJ21. Plant Soil 377:111–126. https://doi.org/10.1007/s11104-013-1981-9
Article
CAS
Google Scholar
Scandalios JG, Guan L, Polidoros AN (1997) Catalases in plants: gene structure, properties, regulation, and expression. In: Scandalios JG (ed) Oxidative stress and the molecular biology of antioxidant defenses. New York: Cold Spring Harbor Laboratory, pp 343–406. ISSN 0196-6006
Segarra G, Van Der Ent S, Trillas I, Pieterse CMJ (2009) MYB72, a node of convergence in induced systemic resistance triggered by a fungal and a bacterial beneficial microbe. Plant Biol 11:90–96. https://doi.org/10.1111/j.1438-8677.2008.00162.x
Article
CAS
PubMed
Google Scholar
Shanker AK, Maheswari M, Yadav SK, Desai S, Bhanu D, Attal NB, Venkateswarlu B (2014) Drought stress responses in crops. Funct Integr Genom 14:11–22. https://doi.org/10.1007/s10142-013-0356-x
Article
CAS
Google Scholar
Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:1–26. https://doi.org/10.1155/2012/217037
Article
CAS
Google Scholar
Shigeoka S, Maruta T (2014) Cellular redox regulation, signaling, and stress response in plants. Biosci Biotechnol Biochem 78:1457–1470. https://doi.org/10.1080/09168451.2014.942254
Article
CAS
PubMed
Google Scholar
Silva M de A, Santos CM dos, Vitorino H dos S, Lima Rhein AF de (2014) Pigmentos fotossintéticos e índice SPAD como descritores de intensidade do estresse por deficiência hídrica em cana-de-açúcar. Biosci J 173–181. ISSN 1981-3163
Simova-Stoilova L, Demirevska K, Petrova T, Tsenov N, Feller U (2008) Antioxidative protection in wheat varieties under severe recoverable drought at seedling stage. Plant, Soil Environ 54:529–536
Article
CAS
Google Scholar
Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125:27–58. https://doi.org/10.1111/j.1469-8137.1993.tb03863.x
Article
CAS
PubMed
Google Scholar
Souza GM, Catuchi TA, Bertolli SC, Soratto RP (2013) Soybean under water deficit: physiological and yield responses. In: Board JE (ed) A Comprehensive Survey of International Soybean Research-Genetics, Physiology, Agronomy and Nitrogen Relationships. InTech, pp 273-298. https://doi.org/10.5772/54269
Google Scholar
Spaepen S, Bossuyt S, Engelen K, Marchal K, Vanderleyden J (2014) Phenotypical and molecular responses of Arabidopsis thaliana roots as a result of inoculation with the auxin-producing bacterium Azospirillum brasilense. New Phytol 201:850–861. https://doi.org/10.1111/nph.12590
Article
CAS
PubMed
Google Scholar
Spaepen S, Vanderleyden J (2015) Auxin signaling in Azospirillum brasilense: a proteome analysis. In: de Bruijn FJ (ed) Biological nitrogen fixation. Wiley, Hoboken, pp 937–940. https://doi.org/10.1002/9781119053095.ch91
Chapter
Google Scholar
Spoel SH (2003) NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15:760–770. https://doi.org/10.1105/tpc.009159
Article
CAS
PubMed
PubMed Central
Google Scholar
Stein E, Molitor A, Kogel KH, Waller F (2008) Systemic resistance in Arabidopsis conferred by the mycorrhizal fungus Piriformospora indica requires jasmonic acid signaling and the cytoplasmic function of NPR1. Plant Cell Physiol 49:1747–1751. https://doi.org/10.1093/pcp/pcn147
Article
PubMed
Google Scholar
Strzelczyk E, Kampert M, Li CY (1994) Cytokinin-like substances and ethylene production by Azospirillum in media with different carbon sources. Microbiol Res 149:55–60. https://doi.org/10.1016/S0944-5013(11)80136-9
Article
CAS
Google Scholar
Sudha G, Ravishankar GA (2002) Involment and interaction of various signaling compounds on the plant metabolic events during defense response, resistance to stress factors, formation of secondary metabolites and their molecular aspects. Plant Cell Tissue Organ Cult 71:181–212. https://doi.org/10.1023/A:1020336626361
Article
CAS
Google Scholar
Tarrand JJ, Krieg NR, Döbereiner J (1978) A taxonomic study of the Spirillum lipoferum group, with the descriptions of a new genus, Azospirillum gen. nov. and two species Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can J Microbiol 24:967–980
Article
CAS
PubMed
Google Scholar
Tien TM, Gaskins MH, Hubbell DH (1979) Plant growth substances produced by Azospirillum brasilense and their effect on the growth of Pearl Millet (Pennisetum americanum L.). Appl Environ Microbiol 37:1016–1024
CAS
PubMed
PubMed Central
Google Scholar
Timmusk S, Wagner EG (1999) The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant-Microbe Interact 12:951–959. https://doi.org/10.1094/MPMI.1999.12.11.951
Article
CAS
PubMed
Google Scholar
Torsethaugen G, Pitcher LH, Zilinskas BA, Pell EJ (1997) Overproduction of ascorbate peroxidase in the tobacco chloroplast does not provide protection against ozone. Plant Physiol 114:529–537. https://doi.org/10.1104/pp.114.2.529
Article
CAS
PubMed
PubMed Central
Google Scholar
Tortora ML, Díaz-Ricci JC, Pedraza RO (2011) Azospirillum brasilense siderophores with antifungal activity against Colletotrichum acutatum. Arch Microbiol 193:275–286. https://doi.org/10.1007/s00203-010-0672-7
Article
CAS
PubMed
Google Scholar
Turan M, Gulluce M, von Wirén N, Sahin F (2012) Yield promotion and phosphorus solubilization by plant growth-promoting rhizobacteria in extensive wheat production in Turkey. J Plant Nutr Soil Sci 175:818–826. https://doi.org/10.1002/jpln.201200054
Article
CAS
Google Scholar
Uknes S, Mauch-Mani B, Moyer M, Potter S, Williams S, Dincher S, Chandler D, Slusarenko A, Ward E, Ryals J (1992) Acquired resistance in Arabidopsis. Plant Cell 4:645–656. https://doi.org/10.1105/tpc.4.6.645
Article
CAS
PubMed
PubMed Central
Google Scholar
Upadhyay SK, Singh JS, Saxena AK, Singh DP (2012) Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions. Plant Biol 14:605–611. https://doi.org/10.1111/j.1438-8677.2011.00533.x
Article
CAS
PubMed
Google Scholar
van Loon LC, van Strien EA (1999) The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol 55:85–97. https://doi.org/10.1006/pmpp.1999.0213
Article
Google Scholar
van Loon LC, Bakker P (2005) Induced systemic resistance as a mechanism of disease suppression by rhizobacteria. In: PGPR: Biocontrol and biofertilization. The Netherlands: Springer, pp 39–66. https://doi.org/10.1007/1-4020-4152-7_2
Chapter
Google Scholar
van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162. https://doi.org/10.1146/annurev.phyto.44.070505.143425
Article
CAS
PubMed
Google Scholar
van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254. https://doi.org/10.1007/s10658-007-9165-1
Article
CAS
Google Scholar
van Peer R, Niemann GJ, Schippers B (1991) Induced resistence and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81:728–734. https://doi.org/10.1094/Phyto-81-728
Article
Google Scholar
Vurukonda SSKP, Vardharajula S, Shrivastava M, SkZ A (2016) Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res 184:13–24. https://doi.org/10.1016/j.micres.2015.12.003
Article
PubMed
Google Scholar
Wang CJ, Yang W, Wang C, Gu C, Niu DD, Liu HX, Wang UP, Guo JH (2012) Induction of drought tolerance in cucumber plants by a consortium of three plant growth-promoting rhizobacterium strains. PLoS ONE 7:1–10. https://doi.org/10.1371/journal.pone.0052565
Article
CAS
Google Scholar
Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100:681–697. https://doi.org/10.1093/aob/mcm079
Article
CAS
PubMed
PubMed Central
Google Scholar
Wei G, Kloepper W, Tuzun S (1991) Induction os systemic resistance of cucumber to Colletotrichum orbiculare by select of plant growth-promoting rhizobacteria. Phytopathology 81:1508–1512. https://doi.org/10.1094/Phyto-81-1508
Article
Google Scholar
Wisniewski-Dyé F, Lozano L, Acosta-Cruz E, Borland S, Drogue B, Prigent-Combaret C, Rouy Z, Barbe V, Herrera AM, González V, Mavingui P (2012) Genome sequence of Azospirillum brasilense CBG497 and comparative analyses of Azospirillum core and accessory genomes provide insight into niche adaptation. Genes (Basel) 3:576–602. https://doi.org/10.3390/genes3040576
Article
CAS
Google Scholar
Yan Z, Reddy MS, Ryu CM, McInroy J, Wilson M, Kloepper W (2002) Induced systemic protection against tomato late blight elicited by plant growth-promoting rhizobacteria. Phytopathology 92:1329–1333. https://doi.org/10.1094/PHYTO.2002.92.12.1329
Article
CAS
PubMed
Google Scholar
Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4. https://doi.org/10.1016/j.tplants.2008.10.004
Article
CAS
PubMed
Google Scholar
Yanni YG, Dazzo FB (2015) Occurrence and ecophysiology of the natural endophytic Rhizobium–rice association and translational assessment of its biofertilizer performance within the Egypt nile delta. In: de Bruijn FJ (ed) Biological nitrogen fixation. Wiley, Hoboken, pp 747–756. https://doi.org/10.1002/9781119053095.ch111
Chapter
Google Scholar
Yasuda M, Isawa T, Shinozaki S, Minamisawa K, Nakashita H (2009) Effects of colonization of a bacterial endophyte, Azospirillum sp. B510, on disease resistance in rice. Biosci Biotechnol Biochem 73:2595–2599. https://doi.org/10.1271/bbb.90402
Article
CAS
PubMed
Google Scholar
Zahedi AM, Fazeli I, Zavareh M, Dorry H, Gerayeli N (2012) Evaluation of the sensitive components in seedling growth of common bean (Phaseolus vulgaris L.) affected by salinity. Asian J Crop Sci 4:159–164. https://doi.org/10.3923/ajcs.2012.159.164
Article
Google Scholar