Abdelaziz OY, Brink DP, Prothmann J, Ravi K, Sun M, García-Hidalgo J, Sandahl M, Hulteberg CP, Turner C, Lidén G, Gorwa-Grauslund MF (2016) Biological valorization of low molecular weight lignin. Biotechnol Adv 34(8):1318–1346. https://doi.org/10.1016/j.biotechadv.2016.10.001
Article
CAS
PubMed
Google Scholar
Ahmad M, Taylor CR, Pink D, Burton K, Eastwood D, Bending GD, Bugg TD (2010) Development of novel assays for lignin degradation: comparative analysis of bacterial and fungal lignin degraders. Mol BioSyst 6(5):815–821. https://doi.org/10.1039/b908966g
Article
CAS
PubMed
Google Scholar
Ahmad M, Roberts JN, Hardiman EM, Singh R, Eltis LD, Bugg TD (2011) Identification of DypB from Rhodococcus jostii RHA1 as a lignin peroxidase. Biochemistry 50(23):5096–5107. https://doi.org/10.1021/bi101892z
Article
CAS
PubMed
Google Scholar
Apler A, Nyberg J, Jönsson K, Hedlund I, Heinemo S, Kjellin B (2014) Kartläggning av fiberhaltiga sediment längs Västernorrlands kust. SGU-Sveriges geologiska undersökning, Länsstyrelsen i Västernorrland
Google Scholar
Asm H, Onozaki H, Imaseki H (1988) Vanillylamine metabolism in Pseudomonas fluorescens. Agric Biol Chem 52(11):2741–2746. https://doi.org/10.1080/00021369.1988.10869155
Article
Google Scholar
Ayyachamy M, Cliffe FE, Coyne JM, Collier J, Tuohy MG (2013) Lignin: untapped biopolymers in biomass conversion technologies. Biomass Convers Biorefin 3(3):255–269. https://doi.org/10.1007/s13399-013-0084-4
Article
Google Scholar
Bandounas L, Wierckx NJ, de Winde JH, Ruijssenaars HJ (2011) Isolation and characterization of novel bacterial strains exhibiting ligninolytic potential. BMC Biotechnol 11:94. https://doi.org/10.1186/1472-6750-11-6794
Article
CAS
PubMed
PubMed Central
Google Scholar
Barbe V, Vallenet D, Fonknechten N, Kreimeyer A, Oztas S, Labarre L, Cruveiller S, Robert C, Duprat S, Wincker P, Ornston LN, Weissenbach J, Marlière P, Cohen GN, Médigue C (2004) Unique features revealed by the genome sequence of Acinetobacter sp. ADP1, a versatile and naturally transformation competent bacterium. Nucleic Acids Res 32(19):5766–5779. https://doi.org/10.1093/nar/gkh910
Article
CAS
PubMed
PubMed Central
Google Scholar
Beckham GT, Johnson CW, Karp EM, Salvachúa D, Vardon DR (2016) Opportunities and challenges in biological lignin valorization. Curr Opin Biotechnol 42:40–53. https://doi.org/10.1016/j.copbio.2016.02.030
Article
CAS
PubMed
Google Scholar
Berman MH, Frazer AC (1992) Importance of tetrahydrofolate and ATP in the anaerobic O-demethylation reaction for phenylmethylethers. Appl Environ Microbiol 58(3):925–931
CAS
PubMed
PubMed Central
Google Scholar
Berryman D, Houde F, DeBlois C, O’Shea M (2004) Nonylphenolic compounds in drinking and surface waters downstream of treated textile and pulp and paper effluents: a survey and preliminary assessment of their potential effects on public health and aquatic life. Chemosphere 56(3):247–255. https://doi.org/10.1016/j.chemosphere.2004.02.030
Article
CAS
PubMed
Google Scholar
Brown ME, Chang MC (2014) Exploring bacterial lignin degradation. Curr Opin Chem Biol 19:1–7. https://doi.org/10.1016/j.cbpa.2013.11.015
Article
CAS
PubMed
Google Scholar
Brown ME, Walker MC, Nakashige TG, Iavarone AT, Chang MC (2011) Discovery and characterization of heme enzymes from unsequenced bacteria: application to microbial lignin degradation. J Am Chem Soc 133(45):18006–18009. https://doi.org/10.1021/ja203972q
Article
CAS
PubMed
Google Scholar
Bugg TD, Rahmanpour R (2015) Enzymatic conversion of lignin into renewable chemicals. Curr Opin Chem Biol 29:10–17. https://doi.org/10.1016/j.cbpa.2015.06.009
Article
CAS
PubMed
Google Scholar
Bugg TD, Ahmad M, Hardiman EM, Rahmanpour R (2011a) Pathways for degradation of lignin in bacteria and fungi. Nat Prod Rep 28(12):1883–1896. https://doi.org/10.1039/c1np00042j
Article
CAS
PubMed
Google Scholar
Bugg TD, Ahmad M, Hardiman EM, Singh R (2011b) The emerging role for bacteria in lignin degradation and bio-product formation. Curr Opin Biotechnol 22(3):394–400. https://doi.org/10.1016/j.copbio.2010.10.009
Article
CAS
PubMed
Google Scholar
Camarero S, Martínez MJ, Martínez AT (2014) Understanding lignin biodegradation for the improved utilization of plant biomass in modern biorefineries. Biofuels Bioprod Biorefin 8(5):615–625. https://doi.org/10.1002/bbb.1467
Article
CAS
Google Scholar
Chen YH, Chai LY, Zhu YH, Yang ZH, Zheng Y, Zhang H (2012) Biodegradation of kraft lignin by a bacterial strain Comamonas sp. B-9 isolated from eroded bamboo slips. J Appl Microbiol 112(5):900–906. https://doi.org/10.1111/j.1365-2672.2012.05275.x
Article
CAS
PubMed
Google Scholar
Fitzgerald DJ, Stratford M, Gasson MJ, Ueckert J, Bos A, Narbad A (2004) Mode of antimicrobial action of vanillin against Escherichia coli, Lactobacillus plantarum and Listeria innocua. J Appl Microbiol 97(1):104–113. https://doi.org/10.1111/j.1365-2672.2004.02275.x
Article
CAS
PubMed
Google Scholar
Gallage Nethaji J, Møller Birger L (2015) Vanillin–bioconversion and bioengineering of the most popular plant flavor and its de novo biosynthesis in the vanilla orchid. Mol Plant 8(1):40–57. https://doi.org/10.1016/j.molp.2014.11.008
Article
CAS
PubMed
Google Scholar
Graf N, Altenbuchner J (2014) Genetic engineering of Pseudomonas putida KT2440 for rapid and high-yield production of vanillin from ferulic acid. Appl Microbiol and Biotechnol 98(1):137–149. https://doi.org/10.1007/s00253-013-5303-1
Article
CAS
Google Scholar
Hibi M, Sonoki T, Mori H (2005) Functional coupling between vanillate-O-demethylase and formaldehyde detoxification pathway. FEMS Microbiol Lett 253(2):237–242. https://doi.org/10.1016/j.femsle.2005.09.036
Article
CAS
PubMed
Google Scholar
Huang XF, Santhanam N, Badri DV, Hunter WJ, Manter DK, Decker SR, Vivanco JM, Reardon KF (2013) Isolation and characterization of lignin-degrading bacteria from rainforest soils. Biotechnol Bioeng 110(6):1616–1626. https://doi.org/10.1002/bit.24833
Article
CAS
PubMed
Google Scholar
Jiménez JI, Miñambres B, García JL, Díaz E (2002) Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440. Environ Microbiol 4(12):824–841
Article
PubMed
Google Scholar
Kaufmann F, Wohlfarth G, Diekert G (1998) O-Demethylase from Acetobacterium dehalogenans–cloning, sequencing, and active expression of the gene encoding the corrinoid protein. Eur J Biochem 257(2):515–521
Article
CAS
PubMed
Google Scholar
Kurosawa K, Laser J, Sinskey AJ (2015) Tolerance and adaptive evolution of triacylglycerol-producing Rhodococcus opacus to lignocellulose-derived inhibitors. Biotechnol Biofuels 8:76. https://doi.org/10.1186/s13068-015-0258-3
Article
PubMed
PubMed Central
Google Scholar
Makela MR, Marinovic M, Nousiainen P, Liwanag AJ, Benoit I, Sipila J, Hatakka A, de Vries RP, Hilden KS (2015) Aromatic metabolism of filamentous fungi in relation to the presence of aromatic compounds in plant biomass. Adv Appl Microbiol 91:63–137. https://doi.org/10.1016/bs.aambs.2014.12.001
Article
PubMed
Google Scholar
Martínez AT, Speranza M, Ruiz-Dueñas FJ, Ferreira P, Camarero S, Guillén F, Martínez MJ, Gutiérrez A, del Río JC (2005) Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol 8(3):195–204
PubMed
Google Scholar
Masai E, Katayama Y, Fukuda M (2007) Genetic and biochemical investigations on bacterial catabolic pathways for lignin-derived aromatic compounds. Biosci Biotechnol Biochem 71(1):1–15. https://doi.org/10.1271/bbb.60437]
Article
CAS
PubMed
Google Scholar
Mulet M, Lalucat J, García-Valdés E (2010) DNA sequence-based analysis of the Pseudomonas species. Environ Microbiol 12(6):1513–1530. https://doi.org/10.1111/j.1462-2920.2010.02181.x
CAS
PubMed
Google Scholar
Naidu D, Ragsdale SW (2001) Characterization of a three-component vanillate O-demethylase from Moorella thermoacetica. J Bacteriol 183(11):3276–3281. https://doi.org/10.1128/jb.183.11.3276-3281.2001
Article
CAS
PubMed
PubMed Central
Google Scholar
Narbad A, Gasson MJ (1998) Metabolism of ferulic acid via vanillin using a novel CoA-dependent pathway in a newly-isolated strain of Pseudomonas fluorescens. Microbiology 144(Pt 5):1397–1405. https://doi.org/10.1099/00221287-144-5-1397
Article
CAS
PubMed
Google Scholar
Nguyen TT, Iwaki A, Izawa S (2015) The ADH7 promoter of Saccharomyces cerevisiae is vanillin-inducible and enables mRNA translation under severe vanillin stress. Front Microbiol 6:1390. https://doi.org/10.3389/fmicb.2015.01390
PubMed
PubMed Central
Google Scholar
Ohta Y, Nishi S, Haga T, Tsubouchi T, Hasegawa R, Konishi M, Nagano Y, Tsuruwaka Y, Shimane Y, Mori K, Usui K, Suda E, Tsutsui K, Nishimoto A, Fujiwara Y, Maruyama T, Hatada Y (2012) Screening and phylogenetic analysis of deep-sea bacteria capable of metabolizing lignin-derived aromatic compounds. Open J Marine Sci 02(04):177–187. https://doi.org/10.4236/ojms.2012.24021
Article
Google Scholar
Okamura-Abe Y, Abe T, Nishimura K, Kawata Y, Sato-Izawa K, Otsuka Y, Nakamura M, Kajita S, Masai E, Sonoki T, Katayama Y (2016) Beta-ketoadipic acid and muconolactone production from a lignin-related aromatic compound through the protocatechuate 3,4-metabolic pathway. J Biosci Bioeng 121(6):652–658. https://doi.org/10.1016/j.jbiosc.2015.11.007
Article
CAS
PubMed
Google Scholar
Overhage J, Priefert H, Steinbüchel A (1999) Biochemical and genetic analyses of ferulic acid catabolism in Pseudomonas sp. strain HR199. Appl Environ Microbiol 65(11):4837–4847
CAS
PubMed
PubMed Central
Google Scholar
Pao SS, Paulsen IT, Saier MH Jr (1998) Major facilitator superfamily. Microbiol Mol Biol Rev 62(1):1–34
CAS
PubMed
PubMed Central
Google Scholar
Pérez-Pantoja D, De la Iglesia R, Pieper DH, González B (2008) Metabolic reconstruction of aromatic compounds degradation from the genome of the amazing pollutant-degrading bacterium Cupriavidus necator JMP134. FEMS Microbiol Rev 32(5):736–794. https://doi.org/10.1111/j.1574-6976.2008.00122.x
Article
PubMed
Google Scholar
Pfennig N, Lippert KD (1966) Über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien. Archiv für Mikrobiol 55(3):245–256. https://doi.org/10.1007/bf00410246
Article
CAS
Google Scholar
Picart P, Wiermans L, Pérez-Sánchez M, Grande PM, Schallmey A, Domínguez de María P (2016) Assessing lignin types to screen novel biomass-degrading microbial strains: synthetic lignin as useful carbon source. ACS Sustain Chem Eng 4(3):651–655. https://doi.org/10.1021/acssuschemeng.5b00961
Article
CAS
Google Scholar
Priyadarshinee R, Kumar A, Mandal T, Dasguptamandal D (2016) Unleashing the potential of ligninolytic bacterial contributions towards pulp and paper industry: key challenges and new insights. Environ Sci Pollut Res Int 23(23):23349–23368. https://doi.org/10.1007/s11356-016-7633-x
Article
CAS
PubMed
Google Scholar
Ramachandra M, Crawford DL, Hertel G (1988) Characterization of an extracellular lignin peroxidase of the lignocellulolytic actinomycete Streptomyces viridosporus. Appl Environ Microbiol 54(12):3057–3063
CAS
PubMed
PubMed Central
Google Scholar
Ravi K, Garcia-Hidalgo J, Gorwa-Grauslund MF, Liden G (2017) Conversion of lignin model compounds by Pseudomonas putida KT2440 and isolates from compost. Appl Microbiol Biotechnol 101(12):5059–5070. https://doi.org/10.1007/s00253-017-8211-y
Article
CAS
PubMed
PubMed Central
Google Scholar
Rinaldi R, Jastrzebski R, Clough MT, Ralph J, Kennema M, Bruijnincx PCA, Weckhuysen BM (2016) Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. Angew Chem Int Ed 55(29):8164–8215. https://doi.org/10.1002/anie.201510351
Article
CAS
Google Scholar
Rodriguez A, Salvachúa D, Katahira R, Black BA, Cleveland NS, Reed M, Smith H, Baidoo EEK, Keasling JD, Simmons BA, Beckham GT, Gladden JM (2017) Base-catalyzed depolymerization of solid lignin-rich streams enables microbial conversion. ACS Sustain Chem Eng 5(9):8171–8180. https://doi.org/10.1021/acssuschemeng.7b01818
Article
CAS
Google Scholar
Rolfe MD, Rice CJ, Lucchini S, Pin C, Thompson A, Cameron AD, Alston M, Stringer MF, Betts RP, Baranyi J, Peck MW, Hinton JC (2012) Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation. J Bacteriol 194(3):686–6701. https://doi.org/10.1128/jb.06112-11
Article
CAS
PubMed
PubMed Central
Google Scholar
Salvachúa D, Karp EM, Nimlos CT, Vardon DR, Beckham GT (2015) Towards lignin consolidated bioprocessing: simultaneous lignin depolymerization and product generation by bacteria. Green Chem 17(11):4951–4967. https://doi.org/10.1039/c5gc01165e
Article
Google Scholar
Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor
Google Scholar
Schwarz M, Rodriguez CM, Guillen DA, Barroso CG (2009) Development and validation of UPLC for the determination of phenolic compounds and furanic derivatives in Brandy de Jerez. J Sep Sci 32:1782–1790
Article
CAS
PubMed
Google Scholar
Shi Y, Chai L, Tang C, Yang Z, Zhang H, Chen R, Chen Y, Zheng Y (2013) Characterization and genomic analysis of kraft lignin biodegradation by the beta-proteobacterium Cupriavidus basilensis B-8. Biotechnol Biofuels 6(1):1. https://doi.org/10.1186/1754-6834-6-1
Article
CAS
PubMed
PubMed Central
Google Scholar
Siebert A, Schubert T, Engelmann T, Studenik S, Diekert G (2005) Veratrol-O-demethylase of Acetobacterium dehalogenans: ATP-dependent reduction of the corrinoid protein. Arch Microbiol 183(6):378–384. https://doi.org/10.1007/s00203-005-0001-8
Article
CAS
PubMed
Google Scholar
Stentelaire C, Lesage-Meessen L, Delattre M, Haon M, Sigoillot JC, Ceccaldi BC, Asther M (1997) By-passing of unwanted vanillyl alcohol formation using selective adsorbents to improve vanillin production with Phanerochaete chrysosporium. World J Microbiol Biotechnol 14(2):285–287. https://doi.org/10.1023/a:1008811019693
Article
Google Scholar
Subramanian R, Worden RM (1993) Kinetics of growth and catechol production by Bacillus stearothermophilus BR321. Appl Biochem Biotechnol 39(1):509–520. https://doi.org/10.1007/bf02919014
Article
Google Scholar
Sudarsan S, Blank LM, Dietrich A, Vielhauer O, Takors R, Schmid A, Reuss M (2016) Dynamics of benzoate metabolism in Pseudomonas putida KT2440. Metab Eng Commun 3:97–110. https://doi.org/10.1016/j.meteno.2016.03.005
Article
PubMed
PubMed Central
Google Scholar
Suman SK, Dhawaria M, Tripathi D, Raturi V, Adhikari DK, Kanaujia PK (2016) Investigation of lignin biodegradation by Trabulsiella sp. isolated from termite gut. Int Biodeterior Biodegradation 112:12–17. https://doi.org/10.1016/j.ibiod.2016.04.036
Article
CAS
Google Scholar
Takasago Perfumery Co Ltd (1993) Preparation of vanillin, coniferyl-alcohol and -aldeyhde, ferulic acid and vanillyl alcohol by culturing mutant belonging to Pseudomonas genus in presence of eugenol which is oxidatively decomposed. Japanese patent application Kokai Number 227980
Taylor CR, Hardiman EM, Ahmad M, Sainsbury PD, Norris PR, Bugg TD (2012) Isolation of bacterial strains able to metabolize lignin from screening of environmental samples. J Appl Microbiol 113(3):521–530. https://doi.org/10.1111/j.1365-2672.2012.05352.x
Article
CAS
PubMed
Google Scholar
Tian JH, Pourcher AM, Bouchez T, Gelhaye E, Peu P (2014) Occurrence of lignin degradation genotypes and phenotypes among prokaryotes. Appl Microbiol Biotechnol 98(23):9527–9544. https://doi.org/10.1007/s00253-014-6142-4
Article
CAS
PubMed
Google Scholar
van Duuren JB, Wijte D, Karge B, dos Santos VA, Yang Y, Mars AE, Eggink G (2012) pH-stat fed-batch process to enhance the production of cis,cis-muconate from benzoate by Pseudomonas putida KT2440-JD1. Biotechnol Prog 28(1):85–92. https://doi.org/10.1002/btpr.709
Article
PubMed
Google Scholar
Vardon DR, Franden MA, Johnson CW, Karp EM, Guarnieri MT, Linger JG, Salm MJ, Strathmann TJ, Beckham GT (2015) Adipic acid production from lignin. Energy Environ Sci 8(2):617–628. https://doi.org/10.1039/c4ee03230f
Article
CAS
Google Scholar
Williams PA, Shaw LE (1997) mucK, a gene in Acinetobacter calcoaceticus ADP1 (BD413), encodes the ability to grow on exogenous cis,cis-muconate as the sole carbon source. J Bacteriol 179(18):5935–5942
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu C, Arancon RAD, Labidi J, Luque R (2014) Lignin depolymerisation strategies: towards valuable chemicals and fuels. Chem Soc Rev 43(22):7485–7500. https://doi.org/10.1039/C4CS00235K
Article
CAS
PubMed
Google Scholar
Yamamoto S, Harayama S (1995) PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl Environ Microbiol 61(3):1104–1109
CAS
PubMed
PubMed Central
Google Scholar
Yang J, Cohen Stuart MA, Kamperman M (2014) Jack of all trades: versatile catechol crosslinking mechanisms. Chem Soc Rev 43(24):8271–8298. https://doi.org/10.1039/c4cs00185k
Article
CAS
PubMed
Google Scholar
Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67(5):1613–1617. https://doi.org/10.1099/ijsem.0.001755
Article
PubMed
PubMed Central
Google Scholar
Zaldivar J, Ingram LO (1999) Effect of organic acids on the growth and fermentation of ethanologenic Escherichia coli LY01. Biotechnol Bioeng 66(4):203–210
Article
CAS
PubMed
Google Scholar
Zaldivar J, Martínez A, Ingram LO (1999) Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol Bioeng 65(1):24–33
Article
CAS
PubMed
Google Scholar
Zhao C, Xie S, Pu Y, Zhang R, Huang F, Ragauskas AJ, Yuan JS (2016) Synergistic enzymatic and microbial lignin conversion. Green Chem 18(5):1306–1312. https://doi.org/10.1039/c5gc01955a
Article
CAS
Google Scholar