Alocilja EC, Zhang D, Shi C (2013) AuNP-DNA biosensor for rapid detection of Salmonella enterica serovar enteritidis. ACS Sym Ser 1143:43–53. doi:10.1021/bk-2013-1143.ch003
Article
CAS
Google Scholar
Bisha B, Simonson J, Janes M, Bauman K, Goodridge LD (2012) A review of the current status of cultural and rapid detection of Vibrio parahaemolyticus. Int J Food Sci Tech 47:885–899. doi:10.1111/j.1365-2621.2012.02950.x
Article
CAS
Google Scholar
Caburlotto G, Suffredini E, Toson M, Fasolato L, Antonetti P, Zambon M, Manfrin A (2016) Occurrence and molecular characterisation of Vibrio parahaemolyticus in crustaceans commercialised in Venice area, Italy. Int J Food Microbiol 220:39–49. doi:10.1016/j.ijfoodmicro.2015.12.007
Article
CAS
PubMed
Google Scholar
Caramit RP, Lucca BG, Souza Ferreira V, Abarza Munoz RA, Richter EM, da Silva RAB (2015) On-site determination of carbendazim, cathecol and hydroquinone in tap water using a homemade batch injection analysis cell for screen printed electrodes. Electroanal 27:271–275. doi:10.1002/elan.201400454
Article
CAS
Google Scholar
Celik G, Eren E, Uygun A (2013) Electrochemical polymerization of 2-thiophen-3-yl-malonic acid for biosensor application. J Appl Polym Sci 128:636–641. doi:10.1002/app.38205
Article
CAS
Google Scholar
Cheng K, Pan D, Teng J, Yao L, Ye Y, Xue F, Xia F, Chen W (2016) Colorimetric integrated pCR protocol for rapid detection of Vibrio parahaemolyticus. Sensors 16(10):1600
Article
PubMed Central
Google Scholar
Costa Sobrinho PdS, Destro MT, Franco BDGM, Landgraf M (2014) A quantitative risk assessment model for Vibrio parahaemolyticus in raw oysters in Sao Paulo State, Brazil. Int J Food Microbiol 180:69–77. doi:10.1016/j.ijfoodmicro.2014.04.008
Article
Google Scholar
Das R, Sharma MK, Rao VK, Bhattacharya BK, Garg I, Venkatesh V, Upadhyay S (2014) An electrochemical genosensor for Salmonella typhi on gold nanoparticles-mercaptosilane modified screen printed electrode. J Biotechnol 188:9–16. doi:10.1016/j.jbiotec.2014.08.002
Article
CAS
PubMed
Google Scholar
DePaola A, Kaysner CA, Bowers J, Cook DW (2000) Environmental investigations of Vibrio parahaemolyticus in oysters after outbreaks in Washington, Texas, and New York (1997 and 1998). Appl Environ Microbiol 66(11):4649–4654
Article
CAS
PubMed
PubMed Central
Google Scholar
Di Pinto A, Terio V, Novello L, Tantillo G (2011) Comparison between thiosulphate-citrate-bile salt sucrose (TCBS) agar and CHROMagar Vibrio for isolating Vibrio parahaemolyticus. Food Control 22:124–127. doi:10.1016/j.foodcont.2010.06.013
Article
Google Scholar
Ding Y, Zhao H, Teng Y, Lan M (2012) Disposable screen-printed biosensor array for simultaneous detection of Microcystis and Escherichia coli oligonucleotides. Adv Sci Lett 6:34–39. doi:10.1166/asl.2012.2016
Article
CAS
Google Scholar
Dong YP, Huang L, Lei ZP, Chu XF, Zhang QF (2012) Electrochemical biosensor of glucose based on the immobilization of glucose oxidase on a carbon microsphere modified glassy carbon electrode. Sens Lett 10:1024–1030. doi:10.1166/sl.2012.2339
Article
CAS
Google Scholar
Duan N, Yan Y, Wu S, Wang Z (2016) Vibrio parahaemolyticus detection aptasensor using surface-enhanced Raman scattering. Food Control 63:122–127
Article
CAS
Google Scholar
Dutse SW, Yusof NA, Ahmad H, Hussein MZ, Hushiarian R (2013) DNA-based biosensor for detection of Ganoderma boninense, an oil palm pathogen utilizing newly synthesized ruthenium complex [Ru (phen) 2 (qtpy)] 2 based on a PEDOT-PSS/Ag nanoparticles modified electrode. Int J Electrochem Sci 8(9):11048–11057
CAS
Google Scholar
Ferguson BS, Buchsbaum SF, Wu TT, Hsieh K, Xiao Y, Sun R, Soh HT (2011) Genetic analysis of H1N1 influenza virus from throat swab samples in a microfluidic system for point-of-care diagnostics. J Am Chem Soc 133:9129–9135. doi:10.1021/ja203981w
Article
CAS
PubMed
PubMed Central
Google Scholar
Fernandes AM, Abdalhai MH, Ji J, Xi BW, Xie J, Sun J, Noeline R, Lee BH, Sun X (2015) Development of highly sensitive electrochemical genosensor based on multiwalled carbon nanotubes-chitosan-bismuth and lead sulfide nanoparticles for the detection of pathogenic Aeromonas. Biosens Bioelectron 63:399–406. doi:10.1016/j.bios.2014.07.054
Article
CAS
PubMed
Google Scholar
Han HS, You J-M, Jeong H, Jeon S (2014) Electrochemical sensing of H2O2 by the modified electrode with Pd nanoparticles on multi-walled carbon nanotubes-g-poly(lactic acid). J Nanosci Nanotechnol 14:4050–4057. doi:10.1166/jnn.2014.8258
Article
CAS
PubMed
Google Scholar
He P, Tucker EZ, Gorman CB, He L (2011) Chemical amplification for in-gel DNA detection. Anal Method 3:2463. doi:10.1039/c1ay05514c
Article
CAS
Google Scholar
Hushiarian R, Yusof NA, Abdullah AH, Ahmad SAA, Dutse SW (2015a) Facilitating the indirect detection of genomic DNA in an electrochemical DNA biosensor using magnetic nanoparticles and DNA ligase. Anal Chem Res 6:17–25. doi:10.1016/j.ancr.2015.10.004
Article
CAS
Google Scholar
Hushiarian R, Yusof NA, Houshiarian N, Abdullah AH, Ahmad SAA (2015b) Computer modeling to optimize the sensitivity of an optical DNA nanosensor. Sens Actuators B Chem 207:716–723. doi:10.1016/j.snb.2014.09.120
Article
CAS
Google Scholar
Ivanov IG, Bachvarov DR (1987) Determination of plasmid copy number by the “boiling” method. Anal Biochem 165:137–141. doi:10.1016/0003-2697(87)90211-9
Article
CAS
PubMed
Google Scholar
Kaneko T, Colwell R (1975) Incidence of Vibrio parahaemolyticus in Chesapeake Bay. Appl Microbiol 30(2):251–257
CAS
PubMed
PubMed Central
Google Scholar
Lee JR, Choi J, Shultz TO, Wang SX (2016) Small molecule detection in saliva facilitates portable tests of marijuana abuse. Anal Chem 88:7457–7461. doi:10.1021/acs.analchem.6b01688
Article
CAS
PubMed
Google Scholar
Liao IC, Chao NH (2009) Aquaculture and food crisis: opportunities and constraints. Asia Pac J Clin Nutr. 18:564–569
PubMed
Google Scholar
Lu L, Chee G, Yamada K, Jun S (2013) Electrochemical impedance spectroscopic technique with a functionalized microwire sensor for rapid detection of foodborne pathogens. Biosens Bioelectron 42:492–495. doi:10.1016/j.bios.2012.10.060
Article
CAS
PubMed
Google Scholar
Maniyankode RA, Kingston JJ, Murali HS, Batra HV (2013) Specific identification of Vibrio parahaemolyticus employing monoclonal antibody based immunoassay. Int J Pharma Bio Sci 4:B156–B164
Google Scholar
Martinez-Urtaza J, Lozano-Leon A, DePaola A, Ishibashi M, Shimada K, Nishibuchi M, Liebana E (2004) Characterization of pathogenic Vibrio parahaemolyticus isolates from clinical sources in Spain and comparison with Asian and North American pandemic isolates. J Clin Microbiol 42(10):4672–4678
Article
CAS
PubMed
PubMed Central
Google Scholar
Martinez-Urtaza J, Powell A, Jansa J, Rey JLC, Montero OP, Campello MG, López MJZ, Pousa A, Valles MJF, Trinanes J (2016) Epidemiological investigation of a foodborne outbreak in Spain associated with US West Coast genotypes of Vibrio parahaemolyticus. SpringerPlus 5(1):1
Article
Google Scholar
Monteiro T, Rodrigues PR, Gonçalves AL, Moura JJG, Jubete E, Añorga L, Piknova B, Schechter AN, Silveira CM, Almeida MG (2015) Construction of effective disposable biosensors for point of care testing of nitrite. Talanta 142:246–251. doi:10.1016/j.talanta.2015.04.057
Article
CAS
PubMed
Google Scholar
Nair GB, Ramamurthy T, Bhattacharya SK, Dutta B, Takeda Y, Sack DA (2007) Global dissemination of Vibrio parahaemolyticus serotype O3: K6 and its serovariants. Clin Microbiol Rev 20(1):39–48
Article
CAS
PubMed
PubMed Central
Google Scholar
Nordin N, Yusof NA, Abdullah J, Radu S, Hushiarian R (2016) Sensitive detection of multiple pathogens using a single DNA probe. Biosens Bioelectron 86:398–405. doi:10.1016/j.bios.2016.06.077
Article
CAS
PubMed
Google Scholar
Ottaviani D, Leoni F, Serra R, Serracca L, Decastelli L, Rocchegiani E, Masini L, Canonico C, Talevi G, Carraturo A (2012) Nontoxigenic Vibrio parahaemolyticus strains causing acute gastroenteritis. J Clin Microbiol 50:4141–4143. doi:10.1128/JCM.01993-12
Article
PubMed
PubMed Central
Google Scholar
Pal S, Alocilja EC (2010) Electrically active magnetic nanoparticles as novel concentrator and electrochemical redox transducer in Bacillus anthracis DNA detection. Biosens Bioelectron 26:1624–1630. doi:10.1016/j.bios.2010.08.035
Article
CAS
PubMed
Google Scholar
Paniel N, Baudart J (2013) Colorimetric and electrochemical genosensors for the detection of Escherichia coli DNA without amplification in seawater. Talanta 115:133–142. doi:10.1016/j.talanta.2013.04.050
Article
CAS
PubMed
Google Scholar
Powell A, Baker-Austin C, Wagley S, Bayley A, Hartnell R (2013) Isolation of pandemic Vibrio parahaemolyticus from UK water and shellfish produce. Microb Ecol 65(4):924–927
Article
PubMed
Google Scholar
Qin C, Gao Y, Wen W, Zhang X, Wang S (2016) Visual multiple recognition of protein biomarkers based on an array of aptamer modified gold nanoparticles in biocomputing to strip biosensor logic operations. Biosens Bioelectron 79:522–530. doi:10.1016/j.bios.2015.12.096
Article
CAS
PubMed
Google Scholar
Rosec JP, Causse V, Cruz B, Rauzier J, Carnat L (2012) The international standard ISO/TS 21872-1 to study the occurence of total and pathogenic Vibrio parahaemolyticus and Vibrio cholerae in seafood: ITS improvement by use of a chromogenic medium and PCR. Int J Food Microbiol 157:189–194. doi:10.1016/j.ijfoodmicro.2012.04.026
Article
CAS
PubMed
Google Scholar
Sha Y, Zhang X, Li W, Wu W, Wang S, Guo Z, Zhou J, Su X (2016) A label-free multi-functionalized graphene oxide based electrochemiluminscence immunosensor for ultrasensitive and rapid detection of Vibrio parahaemolyticus in seawater and seafood. Talanta 147:220–225
Article
CAS
PubMed
Google Scholar
Shen XS, Qian BL, Wu WH, Cai YQ, Liu CC (2011) Elimination of Vibrio parahaemolyticus contamination in shucked oysters (Crassostrea plicatula) to with natural antimicrobial agents TeaPolyphenols. Adv Mater Res 320:427–433. doi:10.4028/www.scientific.net/AMR.320.427
Article
CAS
Google Scholar
Shimohata T, Takahashi A (2010) Diarrhea induced by infection of Vibrio parahaemolyticus. J Med Invest. 57:179–182
Article
PubMed
Google Scholar
Singh S, Jain DVS, Singla ML (2013) One step electrochemical synthesis of gold-nanoparticles–polypyrrole composite for application in catechin electrochemical biosensor. Anal Method 5:1024. doi:10.1039/c2ay26201k
Article
CAS
Google Scholar
Skovgaard N (2012) Risk assessment of Vibrio parahaemolyticus in seafood. Interpretative summary and technical report. Int J Food Microbiol 154:215–216. doi:10.1016/j.ijfoodmicro.2011.12.021
Google Scholar
Song YS, Muthuraman G, Chen YZ, Lin CC, Zen JM (2006) Screen printed carbon electrode modified with poly(L-lactide) stabilized gold nanoparticles for sensitive as(III) detection. Electroanal 18:1763–1770. doi:10.1002/elan.200603634
Article
CAS
Google Scholar
Terzi Gulel G, Martinez-Urtaza J (2016) Molecular characterizations of Vibrio parahaemolyticus in seafood from the Black Sea, Turkey. Lett Appl Microbiol 62(6):494–500
Article
CAS
PubMed
Google Scholar
Tian F, Lyu J, Shi J, Tan F, Yang M (2016) A polymeric microfluidic device integrated with nanoporous alumina membranes for simultaneous detection of multiple foodborne pathogens. Sens Actuators B Chem 225:312–318. doi:10.1016/j.snb.2015.11.059
Article
CAS
Google Scholar
Varnam AH, Evans MG (1991) Foodborne pathogens: an illustrated text, 1st edn. Mosby Year Book, London, pp 157–184
Google Scholar
Vengadesh L, Kok-Gan C, Learn-Han L (2014) Vibrio parahaemolyticus: a review on the pathogenesis, prevalence, and advance molecular identification techniques. Front Microbiol 5:1–13. doi:10.3389/fmicb.2014.00705
Google Scholar
Wang Q, Gao F, Ni J, Liao X, Zhang X, Lin Z (2016) Facile construction of a highly sensitive DNA biosensor by in situ assembly of electro-active tags on hairpin-structured probe fragment. Sci Rep 6:22441
Article
CAS
PubMed
PubMed Central
Google Scholar
Wong HC, Chen M-C, Liu S-H, Liu D-P (1999) Incidence of highly genetically diversified Vibrio parahaemolyticus in seafood imported from Asian countries. Int J Food Microbiol 52:181–188. doi:10.1016/S0168-1605(99)00143-9
Article
CAS
PubMed
Google Scholar
Wu X, Jiang H, Zheng J, Wang X, Gu Z, Chen C (2011) Highly sensitive recognition of cancer cells by electrochemical biosensor based on the interface of gold nanoparticles/polylactide nanocomposites. J Electroanal Chem 656:174–178. doi:10.1016/j.jelechem.2010.11.035
Article
CAS
Google Scholar
Yin H, Xu Z, Wang M, Zhang X, Ai S (2013) An electrochemical biosensor for assay of DNA methyltransferase activity and screening of inhibitor. Electrochim Acta 89:530–536. doi:10.1016/j.electacta.2012.11.093
Article
CAS
Google Scholar
Zhang L, Orth K (2013) Virulence determinants for Vibrio parahaemolyticus infection. Curr Opin Microbiol 16:70–77
Article
CAS
PubMed
Google Scholar
Zhang J, Li Z, Zhang H, Wang J, Liu Y, Chen G (2013) Rapid detection of several foodborne pathogens by F0F1-ATPase molecular motor biosensor. J Microbiol Methods 93:37–41. doi:10.1016/j.mimet.2013.01.011
Article
CAS
PubMed
Google Scholar
Zhang Q, Dong X, Chen B, Zhang Y, Zu Y, Li W (2016) Zebrafish as a useful model for zoonotic Vibrio parahaemolyticus pathogenicity in fish and human. Dev Comp Immunol 55:159–168
Article
CAS
PubMed
Google Scholar
Zhao G, Xing F, Deng S (2007) A disposable amperometric enzyme immunosensor for rapid detection of Vibrio parahaemolyticus in food based on agarose/nano-Au membrane and screen-printed electrode. Electrochem Commun 9(6):1263–1268
Article
CAS
Google Scholar